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Introduction.
As is well known, see for instance [5], p. 36, for every p, 

ik 1 <p<°°» a Bp-a. p. function f is a function to which there 
exists a sequence of ordinary almost periodic functions <pn such that

f — <Pn ||np_> 0 tor n -> oc.

Here the Æp-norm is defined by
i i

II f\\Bl> = finí £(æ) |Pdæ)P= (ü{\f(x) |p}jP

If in particular || f ||/}/» = 0, the function /is called a Bp-zero 
function. If we set f = g when || f—g ||bp = 0, the equivalence 
classes for this relation are called Bp-a. p. points. Multiplication 
of a Bp-a. p. point by a complex constant, addition of two Bp-a. p. 
points, and the Bp-norm of a Bp-a. p. point are defined in the 
natural way. Thus the set of Bp-a. p. points becomes a linear 
metric space, [5], pp. 37—39. Since the Bp-a. p. space is complete, 
see for instance [5], pp. 54—57, it is a Banach space.

To every Bp-a. p. function f, 1 < p < °°, is associated a 
Fourier series

/■(.T) ~ Z « W

where the coefficient function

a (A) =

is 0 only for a denumerable number of values X, the so-called 
Fourier exponents of f, [2], p. 262. Since all functions in a Bp- 
a. p. point have the same Fourier series, this Fourier series is 
called the Fourier series of the Bp-a. p. point.

i



4 Nr. 1

Let M be an arbitrary module of real numbers, i. e., a set 
of real numbers which together with and A2 also contains 
A1— A2. A Bp-a. p. function (Bp-a. p. point) is called a Bp-a. p.—M 
function (Bp-a. p.—M point) if all its Fourier exponents belong to 
M. The subspace of the Bp-a. p. space consisting of all Bp-a. p.—M 
points is a linear closed subspace and hence a Banach space. If in 
particular M is the module of all real numbers, the Bp-a. p.—M 
space is the Bp-a. p. space itself.

We consider a complex bounded linear functional A on the 
space of Bp-a. p.—M functions, i. e., a complex functional which 
satisfies

A (Af) = AAf (Â complex)

A(f+g) = Af+Ag

M^clldk.
where C is independent of /’. Here we may assume C chosen as 
the smallest of its possible values. C is then called the norm of 
A and denoted by || A ||. It is obvious that A takes the same value 
on all Bp-a. p.—M functions in a Bp-a. p.—M point. Thus A may 
also be considered as a bounded linear functional on the Bp-a. p.— 
M space. With usual addition, usual multiplication by a complex 
constant, and the above norm, the set of bounded linear functionals 
on the Bp-a. p.—M space is a Banach space, the so-called dual 
space of the Bp-a. p.—M space.

We shall prove in the present paper that for 1 < p < oc and 
any module M of real numbers the dual space of the Bp-a. p.— 
M space is the Bq-a. p.—M space where q is determined by 
1/p 4- I/7 = 1. The isomorphism (i. e., the linear one-to-one 
isometric mapping) of the dual space of the Bp-a. p.—M space 
on the Bq-a. p.—M space is given by

Aff where Aff f = M { fg }.

'fhe dual space of the Bx-a. p.—M space will also be completely 
characterized.

We shall deduce this main result by two rather different 
methods. The first method is the most elementary one and uses 
only the ordinary theory of generalized almost periodic functions. 
It is based on previous results by R. Doss [7], [8], and is an 
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extension of the method used by Doss. This method is set forth 
in Part I of the paper.

'fhe second method, which is set forth in Part II of the paper, 
consists in the establishment of a close correspondance between 
the Bp-a. p.- M points and the measurable p-integrable functions 
on the Bohr compactification of the real axis by all ordinary 
a. p.—M functions. When this correspondence is established, our 
main result concerning the dual space of the Bp-a. p.—M space, 
1 _<p<oc, is an immediate consequence of the generalization 
to the abstract ease of F. Riesz’s classical result concerning the 
dual space of the space of measurable p-integrable functions, 
1 < p < oc.

Part 1.
1. Preparations.

1. We have mentioned in the Introduction that the Bp-a.p. 
space, 1 p<oo, is a complete space; or, in other words, 
that if fn is a //'’-fundamental sequence of Bp-a. p. functions: 
I) fm — in ||/¿'' “*■  () f°r "h n 3C> then there exists a Bp-a. p. func
tion /’such that ¡I f—fn ||/{/>--> 0 for n oc. We shall use moreover 
that f, as shown in [5], pp. 54—57, can be constructed “from 
pieces of the fn" as indicated on the following figure

where (I = 7’0 < 7\ < T2 < • • • -->■ oc and the only extra demand 
to 7’n is of the form

Tn> t(T0, 7\, •••, /’„.J, n = 1,2, •••.

When in the following the letter G is applied (instead of the 
usual B), this indicates that the theorems are true for all three 
types of generalized almost periodic functions, the StcpanolT a. p. 
functions, the Weyl a. p. functions, and the Besicovitch a. p. 
functions (for their definitions see for instance [5], pp. 33—39).
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2. On account of Holder’s inequality we have || /’||(jPi 5 
Ufor l<pi<p2. Hence a Gl>,-a. p. function (Gp‘-zero 
function) is also a Gp*-a.  p. function (GP1-zero function).

3. A bounded G1-a. p. function (bounded G1-zero function) 
is a Gp-a. p. function (Gp-zero function) for all p, 1 < p < oc ; 
[5], p. 62. We shall call such a bounded G*-a.  p. function (bounded 
G^-zero function) a G -a. p. function (G -zero function).

4. Deeper-lying theorem: A B1-a. p. point which contains a 
Bp-bounded function for a fixed P, 1 <P < oc, contains also a 
Bp-a. p. function. [5], pp. 99—106.

5. We consider the inequalities

where 1 S p < og. See [6], pp. 220—221, exercise 10. These 
inequalities, the latter in connection with Holder’s inequality, 
show that the mapping

(i) A-’-Zi.
1

where f2 = | /i |p sign fx and hence /i = | /‘2 |p sign f2 is (or more 
correctly: may be considered as) a homeomorphic mapping of 
the Gp-a. p. space on the G1-a. p. space. Hereby we have used 
that (in consequence of the two inequalities) fx and f2 are simul
taneously (ordinary) a. p. functions. We see further that in this 
case they “majorize” each other; [4], p. 60. Hence (1. c.) fx and 
f2 are simultaneously a. p.—M functions. Since a Gp-a. p.— M 
function is a function which can be Gp-approximated by a. p.— 
M functions (cf. 8. below), we conclude that if /'j is a Gp-a. p.—M 
function, then f2 is a G1-a. p.—M function, and conversely. Hence 
(1) is also a homeomorphic mapping of the Gp-a. p.—M space 
on the G^a. p.—M space.

Combining this result and the corresponding result with p 
replaced by g, 1 5g<^c, we see finally that

fi~^ fz>
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where f, = | fA |'/ sign fx, and hence /i = \f2\p sign f2 is a homeo
morphic mapping of the Gp-a. p.—M space on the Gq-a. p.—M 
space for any module M of real numbers. In particular, when 
fi is Gp-a. p.—M, then f2 is Gq-a. p.—M, and conversely. Cf. [11], 
pp. 422—423.

6. If (pn is a sequence of Gap-a. p. functions which Gap- 
converges to the Ga,,-a. p. function f and ipn is a sequence of 
(/“’-a. p. functions which (/“’-converges to the Gaq-a. p. function 
g, for fixed a 1, 1 < p < oc, 1 < q < oo, 1/p + 1/q = 1, then 
(pn y>n will (/“-converge to fg. This follows easily by application 
of Holder’s and Minkowski’s inequalities. In particular, when 
f is a Gap-a. p.—M function and g is a Gaq-a. p.—M function, 
then fg is a G“-a. p.—M function. Cf. [11], pp. 416—417.

If /is a (/“-a. p.—M function and g is a G -a. p.—M function 
for fixed a 1 , then fg is a (7“-a. p.—M function. In order to 
see this we introduce the cut-off function

Since

(K*))n
I /(x) for |/(æ)|Sn
I 7i sign f (.r) for | f(x) | > n.

we see that if /is a. p.—M, then (/)„ is a. p.—M as it is majorized 
by /; [4], p. 60. Il follows that in the general case (f)n is G* -a. p.— 
M. Further (f)n f for n-> oo; [5], pp. 44—45. Since g is 
bounded, it follows that (f)n g G“ fg. Both (f)n and g are Gx-a. p. 
—M, in particular (72-a. p.—M. From the above-treated case 
we conclude that the bounded function (f}ng is a (/X-a. p.—M 
function. Then the (/“-limit fg is a (/“-a. p.—M function, as was 
to be proved.

7. Let M be a denumerable module of real numbers cq, 
a2, •••. By a sequence of Bochner—Fejér kernels belonging to 
M we understand a sequence of non-negative trigonometric poly
nomials with exponents from M, positive coefficients, mean 
values 1, and which converge formally to e'“,|X. It follows 
that the coefficients are < 1 .

Let
¿’a (An) eiÂ"x = (A) eiAx 
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be a trigonometric series and M an arbitrary denumerable module 
of real numbers cq, a2, •••. Let

M*)  =
be a sequence of Bochner—Fejer kernels belonging to M. Then

^.(•o =
is called a Bochner—Fejer sequence belonging to M of the 
trigonometric series. If every X for which a (Â) # 0, belongs to 
M, then the series is said to belong lo M, and om is called a full 
Bochner—Fejer sequence of the series.

8. Let f be a Gp-a. p. function for a fixed p, 1 < p < og , 
with the Fourier series

/ (•r) ~ ¿ o G) e‘ÀX-

Let M be a denumerable module and ain a Bochner—Fejer 
sequence belonging to M of the Fourier series. Then || ||gp ■*"  
II/IIgp (see [2], PP- 263—266). If | /'(.r) | < C for all .r, then 
I am (x) I = C for a^ x- If am i's a full Bochner-Fejer sequence 
of the series, then am G'f f for n? —> oc; [2], pp. 262—266.

9. If f yja (Å) e'is a /P-a. p. function and g (.r) =
is a trigonometric polynomial, then (obviously)

-'/{/»} = Z« U)bW-

If /'~ V« (A) is a p. function and g ~ b (A) e1?'*  is a 
B9-a. p. function for fixed p and q, 1 <p < oc, 1 < </ < oo, 1/p 
+ I/7 = 1, and furthermore a (Â) b (2) = 0 for all Å, then

= 0.

In order to see this, let am be a full Bochner-Fejér sequence 
of f. Then by 8. we have crm™f f and, using also the above 
remark, M{amg} = 0. As a result of 6. the function fg is 
/P-a. p. and M { am g} -> M { fg}. Thus M { fg ) = 0, as we 
had to show.

10. If a sequence A„( of bounded linear functionals on a
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Banach space converges weakly, i. e., Am f converges for every 
/' in the Banach space, then there exists a constant C such that 
Il A,n II < C lor all m. See for instance [9], p. 21.

2. Necessary and sufficient conditions for a trigonometric 
series to be the Fourier series of a Bp-a. p. 

function for a given p, 1<P< oc.

Doss, [7], p. 209, and [8], pp. 89—91, has proved the following 
two theorems.

Theorem A. A necessary and sufficient condition for a trigono
metric series ^ane'?'n'1 to be the Fourier series of a BX-a. p. 
function is that for a full Bochner-Fejér sequence am of the series 
there exists a constant C such that | <rm (.r) | < C /or all x and all m.

Theorem B. A necessary and sufficient condition for a trigono
metric series ^ane'^"x to be the Fourier series of a B1-a. p. 
function is that a full Bochner-Fejér sequence am of the series has 
the following property: To every e > 0 there exists a ô > 0 such 
that Me { I am (a?) I } < £ for any measurable set E with upper mean
measure m E < ô.

The remaining cases, 1 < p < oc, are dealt with in the fol
lowing :

The Orem 1. Let p be a fixed number, 1 < p < oc. A necessary 
and sufficient condition for a trigonometric series ^ane'^"x to be 
the Fourier series of a Bp-a. p. function is that for a full Bochner- 
Fejér sequence am of the series there exists a constant C such that 
II °m ||ö'' < C for all m‘

Proof. The necessity of the condition is clear, for if the series 
is the Fourier series of the Bp-a. p. function f, then as stated in 
1, 8. we have ||<rm||BP< || /J^p.

We shall now show that the condition is sufficient. Assuming 
the condition fulfilled, we show first that the series is the Fourier 
series of a ZF-a. p. function; and we do this by showing that it 
fulfils the condition from Theorem B. Let E be an arbitrary 
measurable set of real numbers; let e denote the characteristic 
function of E; and let om be a full Bochner-Fejér sequence of 
the series. Determining q by l/pA-l/q — 1 we obtain by Holder’s 
inequality



10 Nr. 1

ME { I O) | } = Af { e (x) I am (x) I } <

^{e^Ÿ = \\am\\Bl>(mEŸ<C(rnEÿ'

and this tends to 0 for ni E-+0. Hence the condition from 
Theorem B is fulfilled so that our series is the Fourier series of 
a /T-a. p. function 7i. Thus, by 1,8. we have || h — om ||Bi -► 0 
for mesc, in particular || am— an ||Bi—>■ 0 for in, n oo.

We shall now determine a /T-limit function g from pieces of 
the as indicated on the following figure

<7 3 Oo &3

and show that we can determine 0 = To < 1\ < T2 < • • • -> oc 
so that II g ||/jp < esc.

From
II ||bp = i™ -1-( I am (x) |" dx < Cp

Í I O) I" dx < 2 Cp
J±Tln_i

respectively, m = 1,2, • • •. Besides choosing Tm > I (To, • • - , 
T'm—i) which by 1, 1. secures the /^-convergence of am towards g 
we choose T > 7„l + 1 and Tm > s (Tm_i) for m — 1,2, • • *. Then 
for Tm <T<Tm + i we get

T + x 2 1 J—T

follows

H111 I am O) I'" dx < 2 CP.
I T I -> 00 I •'()

Hence there exists a tm such that

Ml<>* coI"dx<2c" for Id>I •'()

and there exists an s — s(Tm_i) such that

1
T-(±Tm_J for i T > s
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For — î’m +1 < 7’ < — Tm we get analogously that

I 9 (æ) |P dx < 4 CP-
1 »'y

i
Hence || g ||Bp 4/’C<oc, as desired.

We have seen that our series is the Fourier series of a B1-a. p. 
point which contains the Bp-bounded function g. It follows by 
the theorem in 1, 4. that the B1-a. p. point contains a Bp-a. p. 
function f. Thus our series is the Fourier series of a Bp-a. p. 
function f. This completes the proof of Theorem 1.

Corollary. Let Vo(A)e'^r be a Bp-u. p. function for a 
fixed p, 1 < p < oc, and let M be an arbitrary module of real 
numbers. Then the subseries

2>(A)
Zem

is the Fourier series of a Bp-&,. p. function f .
Proof. Without loss of generality we may assume M to be 

denumerable. A Bochner-Fejér sequence crm belonging to M of 
the original series 5// (A) e1^'1 is plainly a Bochner-Fejér 
sequence belonging to M of the subseries u (A) el¿x, and for 

ÂEM 
this latter series it is a full Bochner-Fejér sequence.

From 1,8. it follows that || am ||ßp < || f ||ßp. This implies, 
by Theorem 1, that u (A) el?'x is the Fourier series of a Bp- a. p. 
function, q. e. d. ¿EM

Remark. The Corollary is also true when p = 1. (Cf. Doss 
[S], p. 91). fhe Corollary in the case p = oc is an immediate 
consequence of Theorem A.
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It is natural to mention, in connection with the above theorems, 
the following theorem of Pitt, [10], pp. 144—147, which gene
ralizes the Hausdorff-Young Theorem for ordinary Fourier series.

Theorem C. Let p and q be fixed numbers with l/p 4- 1/q = 1 
and 1 < q <2 < p < oc.

(a) If f is a B''-i\. p. function with the Fourier series anel'l,x 
we have

(b) Every trigonometric series 5Janel^llX with | an |9 < + og is 
the Fourier series of a Bp-a. p. function f, and

Part (b) of this theorem will be applied in the following.

3. The dual space of the Bp-a. p.-M space, 1 <p < oc.

Theorem 2. Let M be a module of real numbers and p, q fixed 
numbers, 1 < p < oc, 1 < q < oc, satisfying 1/p + I/7 = 1 . Let 
further g be a Bq-&. p.—M function. Then there exists a Bp-&. p.— 
M function f such that

(2) |M{/»}| = MIb'-Mb’-

Thus, when Agf = 4/{ fg } Zs considered as a bounded linear functio
nal on the Bp-8l. p.—M space, the norm of Ay is equal to || g ||H</.

2
Proof. As shown in 1. 5. the function f — | g |/J sign g is a 

Bp-3x. p.—M function. An immediate calculation shows that it 
satisfies (2).

Theorem 3. Let M a module of real numbers. Let further 
g be a Bx-a. p.—M function. Then, when f runs over all Bl-i\. p.—M 
functions and z runs over all Bx-zero functions we have

(3) sup 
/

In other words: When Agf = M{/^} is considered as a bounded 
linear functional on the Bl-i\. p.—M space, the norm of Ag is equal to



Nr. 1 13

lim II//H b" = ni in SUP I 7 (æ) + z (.r) 
q -> X z x

Proof. We shall begin by showing that the second sign of 
equality in (3) is valid and do this in two steps, one for < and 
one for^.

In order to show the inequality <, we shall prove that for 
any Bx-zero function z we have

lim ¡I 7 ||ßQ < sup I 7 (x) + z (x)
q -> X X

Without changing the value of the left-hand side we can replace 
7 by 7 + z whereafter the inequality is clear.

In order to show the inequality > (and the existence of the 
minimum) we have to construct a Bx-zero function z such that

lim II 7 ||Bq > sup I 7 (.r) + z (;r) |.
q -> x x

Let (Jin be a full Bochner-Fejér sequence of 7. Then || am ||B</ ' ~ 
II 7 ||b'/ for 1 ^7 < oc, so that

(4) lim ||7||b'/^ lim || am ||B</ = sup |or,n(.r)
q -> 00 q -> 00 x

(for the last sign of equality, see [3], pp. 110—111). We construct 
now by I, 1. a B1-limit function f from pieces of the <r,n. Then 
it follows from (4) that

lim II 7 ||Bq > sup I /’(.r)
q X X

and obviously f = g + z where z is a Bx-zero function.
Thus the second sign of equality in (3) is established.
We shall now prove that the sign < holds between the first 

and the third term in (3). When f is a B1-a. p. function, 7 a 
B°°-a. p. function, and z a Bx-zero function we have M^fg\ = 
4/ { / (.7 + z) }> which we obtain from M { (f)n 7 } = M{ (f)n (g + z) } 
when we let n -+■ sc (see end of 1, 6). It follows that

y{/X3_+_z)
m<7|}
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Finally we shall show that the sign > holds between the first 
and the second term in (3). On account of Theorem 2 there 
exists for every p, 1 < p < oc, a Bp-a. p.—M (and hence B*-a.  p.— 
M) function fp such that when 1/p + l/ç = 1

I M{ fr 9 } I = II fp l|ßp II9 ||b'' 5 Il fp ||b> II9 ||b’ •
Hence

SUP -ïft i, — hm 11.711;//.
p H fp ||b‘ <z->oo

This completes the proof of Theorem 3.
It will now be natural to introduce in the set of Bx-a. p. 

functions the norm

II /’ll«00 = li™ II /* 11= min sup | /(.r) + z (x) |<7 -> co z X

where z runs through all Bx-zero functions. Obviously a Bx-zero 
function z may be characterized as a BX-a. p. function with 
II z ||b°° = 0. Now in the usual fashion we introduce Bx-a. p. points 
and organize them as a linear metric space. That the Bx-a. p. 
space is complete, and hence a Banach space, may for instance 
be deduced from Theorem 4, below. For an arbitrary module M 
of real numbers we define in the usual way Bx-a. p.—M functions 
and points. The subspace of Bx-a. p.—M points is called the 
B -a. p.—M space. It is linear and closed and hence a Banach 
space.

In the following theorem the term “isomorphic mapping” 
designates “linear one-to-one isometric mapping”.

Theorem 4. Main Theorem. Let M be an arbitrary module of 
real numbers and p, q tino numbers, 1 < oe, 1 < q< oc,
satisfying 1/p + 1/q = 1. Then the dual space of the Bp-a. p.—M 
space is isomorphic to the Bq-a. p.—M space. The isomorphic 
mapping is given by Ag -> g inhere Ag is the bounded linear functio
nal on the Bp-a. p.—M space given by Agf = M { fg }.

Proof. On account of Theorem 2 and Theorem 3 it suffices 
to show that every bounded linear functional on the Bp-a. p.—M 
space has the form Agf = M{fg} where g is a Bq-a. p.— M 
function.

In the case p = 1 this statement was proved by Doss [8] 
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and was one of the main results of his interesting paper. With 
the previous preparations at our disposal we can easily treat the 
general case by his method.

We consider first the case where M is a denumerable module 
of real numbers Á2, • • •. We put

A(eU"x) = 5„

and form the trigonometric series

(5)

Let
M*>  =

be a sequence of Bochner-Fejér kernels belonging to M (see 1, 7.). 
Then if

is an arbitrary Bp-a. p.—M function the sequence

M®) = £d™bne>*"

is a Bochner-Fejér sequence belonging to M of f. Further

A(Jm = £d^bnan.

We shall show below that (5) is the Fourier series of a Bq-a. p. 
—M function g. Then we get by 1, 9.

A(Jm = >? dnn) bn an = M{amg}.

Further, from || f—<ym ||ßP -> 0 we get and
Aom -> Af. Hence

Af = lim Aom — lim ( am ff} = M(fg},
rn -> x ni ->■ x

as was to be proved.
That (5) really is the Fourier series of a Bq-a. p.—M function 

is seen in the following way. The sequence
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is a Bochner-Fejér sequence belonging to M of (5). We consider 
the sequence of bounded linear functionals Am on the Bp-a. p.—M 
space given by

Amf= Aam =

Since Aam —> Af, the sequence Am converges weakly to A in the 
Banach space in question. This implies, by the theorem in 1. 10, 
the existence of a constant C such that

|| A„, || ^ C for all m.

From Theorem 2 and Theorem 3 it follows that || Ani || = || Tm |(/}</. 
In the special case </ = sc we have

II Hzj50 = lim II T„, ||Bp = sup I Tm (.r) I.
p->oc X

Thus in the case 1 < q < sc it follows from Theorem 1 and in 
the case ç = sc from Theorem A that (9) is the Fourier series 
of a p. function. Of course this function is a Bq-a. p.—M 
function. This completes the proof of the Main Theorem in the 
case of a denumerable module M.

We now pass to the case of an arbitrary module M. Let

A («'* ’) = äA

for ze M. We shall first show that there exists only a finite number 
of A’s with I d} I > a when a is a positive constant. We do this 
indirectly by assuming that there exists an infinite sequence 
Â], Â2, • • • with I a^n I > a. Let kn be a sequence of positive numbers 
with X"kn — sc and if p < 2 such that Vk,, < sc and if p > 2 

p
such that kp~} < sc. By Theorem C this implies, since 
HJ^INb that

is the Fourier series of a ZF-a. p.—M function for p < 2 and of a 
Bp-a. p.—M function for — and thus in any case of a 
Bp-&. p.—M function.

Let am be a Bochner-Fejér sequence of f corresponding to 
the module generated by 21( À2, • ••. 'Phen
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^(x) = Z^l)knaÅiieiÅ^

where O < c^!!) < 1 and -> 1 for fixed n and m -> oo. Thus

A Om = Z c(nm) kn I aÅH I2 > «2 Z <£"> Àn -> oc

for m —> oo. Since øin BP f implies Af, we have obtained
a contradiction.

In particular we have shown that there exists only a denu
merable number of A’s with The denumerable module
generated by these Â’s is denoted by Mi and the elements of 
this module by Z1( Â2, •••.

When we consider the contraction of A to the Bp-a. p.—Mr 
space, we conclude from the case of a denumerable module 
treated above that

is the Fourier scries of a Bq-a. p.—function 7 and that for any 
Bp-a. p.—M( function we have Af = M ( ffj }.

Now let f be a Bp-a. p.—M function whose Fourier exponents 
do not belong to Mj. Then Af = 0 since / can be /^-approximated 
by trigonometric polynomials without exponents in M,. From 
1, 9. we see that M{fg} = 0. Hence also in this case we get 
Af= •M{fg}.

Finally, let f be an arbitrary Bp-a. p.—M function. Then by 
the Corollary and the Remark, p. 11, we can write /in the form 

where /M1 is a Bp-a. p.—M, function and / — /M1 is a Bp-a. p.— 
M function whose Fourier exponents do not belong to Mj. From 
the two special cases just treated we get

Af = A (/«•) + A (f- =

+ = M{fg}.

This completes the proof of the Main Theorem.
Dan.Mat.Fys.Medd. 29, no. 1. 2
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Part II.
1. Bohr compactification of the real axis.

Let M be an arbitrary module of real numbers. We consider 
the Bohr compactification of the group /? of real numbers 
with usual topology by all (ordinary) a. p.—M functions. See 
e. g. [1], pp. 477—478.

We denote by H the subgroup of R which consists of the x 
for which e'?x — 1 for all AeM. In the uninteresting case when 
M = { 0 } we have H = R. If M has the form {zj£|z? — 0, 

± 1, ' " * } » we have H =

We shall make use of the following facts concerning 7?M (see 
the above quotation).

1) is a compact abelian group.
2) When the groups /?M and R/H are considered without 

their topologies, the group R/H is a subgroup of RM. The set 
R/H lies everywhere dense in /?M. Incidentally, in the case 

= 0, ± 1, • • •}, the group Rm is identical with

the topological group R/H.
3) When a continuous function on RM is contracted to R/H

and the contracted function is extended by periodicity with H as 
periodicity module to R, the resulting function is an a. p.—M 
function on R. Conversely, an a. p.—M function q> on R has H 
as a periodicity module and may therefore be considered as a 
function on R/H, and this function extends itself in unique 
fashion by continuity in to a continuous function <p' on /?M. 
This correspondence between the a. p.—M functions on
R and the continuous functions on is of main importance 
in the following.

4) When <p = eax, AeM, the function tp’ is a continuous 
character on /?M. All continuous characters on /?M can be obtained 
in this way. [Thus the module M with discrete topology is the 
character group of /?M.]
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5) Let M denote the Bohr mean and MN the von Neumann 
mean, both in R, and let \ denote the Haar integral in 
with §1 = 1. Then for any a. p.—M function cp on R we have

Mq> = M^q) = Jiq/.

2. Extension of the correspondence (p^^cp' between the a. p. 
—M functions on R and the continuous functions on to a 
correspondence between the B^-a. p.—M space over R and 

the space Lp over 1?M, 1 < /> < oc.

As well-known for any fixed p, \ ^.p < <x>, the set of measur
able p-integrable functions (/(.r') on is organized as a Banach 
space Lp by the norm

1

hl|p= (S|ff(*')|' ,)í
while for p = oc the set of essentially bounded measurable func
tions g (æz) on Rm is organized as a Banach space Lx by the norm

= lim 
p + x

= vrai max | g (x') 
x'

Functions which are equal almost everywhere (a. e.) are con
sidered to be the same function.

For this, and also for results used in the following, we refer 
the reader to Loomis’ book [9], Chapter III, pp. 29—47.

We shall now prove the following
Correspondence Theorem. Let M be a module of real numbers. 

Then there exists a mapping f-> f of the set of B1-^. p.—M 
functions on the set of integrable functions on RM which is an 
extension of the previous mapping (p cp' of the set of a. p.—M 
functions on the set of continuous functions on RM. This mapping 
has the following properties.

1. For any fixed p, 1 p < oo, the contraction of the mapping 
to the set of Bp-a. p.-—M functions is a linear isometric mapping 
of the set of Bp-a. p.—M functions on the space Lp over Ru. It 
may be considered as a one-to-one linear isometric mapping of the 
Bp-a. p.—M space on the space Lp over R^.

2*
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2. For any B1-a. p.—M function f me haue

l/T = |r|. = =
Cf)' = (D. = (/")„

and when f is real

(f+y = (f')+ and (O' = (f)~

3. If fis a Bp-a. p.—M function and y is a Bq-a. p.—M function,
I /p + 1 /g = 1 , 1 < P < 00 » 1 — q < oc, then

(fgy = f'g'-

4. If the IP-a. p.—M function f has the Fourier series \ an e1 '?"t, 
then f has the Fourier series

in particular Mf = \ /'.
5. If f is a Bp-a. p.—-M function for a fixed p, 1 <p < oc, 

and 1 ç < oc, then

(I/I« sign f)' = I f|’sign f'.

6. The asymptotic distribution function of a real B1-a. p.—M 
function fis identical with the distribution function of f.

Proof. Let f be a Bp-a. p.—M function for a fixed p, 1 p 
<oc. Then there exists a sequence of a. p.—M functions qpn 
such that ypn BP f. In particular || ypm— yn ||bp -*■  0 for zn, ji -> oc. 
Hence by 3) and 5) we get

II Tm — Tn ||p = S I Tm ~ Tn I" = ( ( | Tm ~ Tn |'’) ' = || Tm ~ Tn ||n'' 0
for m, n^oc. It follows that ypn will p-converge to a function

from Lp which is determined a. e. This function gp depends 
only on f and not on the sequence cpn. To see this, let ipn be another 
sequence of a. p.—M functions which ^''-converges to f, and 
suppose that y>nJ^hp. Then the combined sequence (f\, y\, <p2, 
y>2, ••• will Bp-converge to f, and it follows that yp^ , <p2, 
yf,, • •• will p-converge, in particular that (pn — y>n _%.(). Hence 
||^p Up II/) =
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i

i

-a. p.—M function. We shall show that f 
= C. There exists (1,1,8.) a sequence

^-converges to f and has
99,t (,r') I < C and <pn 2> f which implies | f (.r') | < C,

|/>. and II^IIb/’ = H^nllp

is If -a. p.-—M, then gPi = gPt a. e., tor it 1 < p2 and
<Pn^f> then <pn^f, and we get <pn^ gPt, <pn^ glh the first of 
which implies that <pn^ gPt so that || gPt — gPi ||Pi = 0.

If in particular f is an a. p.—M function, then f,f, • • • /’
and since f, f, • • • X f we see that the function g corresponding 
to /' is f. Also in the general case when fis a If-a. p.—M function 
the corresponding function g, defined by the above procedure, 
will be denoted by f.

Now let f be a B°° 
belongs to Lx. Let sup | f (.r)

X

of a. p.—M functions <pn w
< C. Then
a. e. Thus f belongs to //, and furthermore vrai max |f'(.r')| 

sup |/(.r)|.
X
For a fixed p, l^/)<x, let f be a Bp-a. p.—M function. 

We choose a sequence of a. p.—M functions qpn which /¿''-converges 
to /’. Then || </,, ||bp -> || f\\BP, || ||p || f

If /is a ZT-a. p.—M function and <pn is chosen as usual we 
get Mf, p', and M<pn = so that

(i)

Let f and g be two If-a. p.— M functions. Let cpn and y>H be 
chosen correspondingly. Then we gel successively, when a and 
b denote complex numbers, acpn + bipnHi af + bg, (pn\ f’, ipn 
J> g', (ayn + bipny (af + bg)', a<ptl + by>n 1> af' + bg'. Since 
(a<pn + bipn)' = a (pn + bipn we get

(a/ + bg)' = af + bg'.

In an analogous way be obtain the relations in 2.
In order to prove 3. we consider first the case 1 < p < oc, 

and hence 1 < g < 00. That fg is If-a. p.—M follows from I, 1,6. 
Let (pn and y>n be chosen in the usual way for f and g respectively. 
Then bv I, 1,6. we get VnVn1^ f(.I- Hence we get successively
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<Pn A g'> (<PnVn)'-^ Cfg)'> and (pn y>n I fg' (by the result 
corresponding to 1,1, 6. for the space Lp). Since (<pnipny = <PnVn
we get

(fgy = f’g'-

Next, we consider the case p — 1, g = oc. That fg is B1-a. p.— 
M follows from I, 1, 6. We showed there that (f)ng fg. Hence 
((f)ng) -i {fg}' since our mapping is linear and isometric. 
However, (/)„ and g are Bx-a. p.—M, in particular B2-a. p.—M. 
Hence from the case just treated we get ((/*)„ ^)' = {{f^'g' = 
(f}ng' and this -X f' g' since f is in L1 and g' in Lx. Thus also 
in this case {fg}' — fg'. This completes the proof of 3.

From the special result (1) the general statement 4. is now 
an easy consequence.

The proof of 5. is analogous to the proof of 3. It uses I, 1, 5. 
instead of I, 1, 6. However, we shall not use 5. in the following.

Next, for any fixed p, 1 S p < oc, we consider an arbitrary 
function g(x') from Lp. There exists a sequence of continuous 
functions <pn on which _> g. [As stated in 3) every continuous 
function on is of the form 9? where 9? is an a. p.—M function.] 
Then || <pm — (pn ||bp = || <pm— <pn ||p -> 0 for in, noc and hence 
</n will Æp-converge to a Bp-a. p.—M function f for which f' = g. 
Since the mapping is linear and isometric, the Bp-a. p.—M 
functions f for which f' = g are exactly the functions in a Bp- 
a. p.—M point. Thus the contraction of our mapping f -*  f' to 
the set of Bp-a. p.—M functions maybe considered as a one-to-one 
mapping of the Bp-a. p.—M space on the space Lp. Obviously 
this mapping is linear and isometric. This proves 1. for 1 p < oc.

Next we consider the case p = oc. We have already seen 
that the set of Bx-a. p.—M functions is mapped into the space 
Jx and that || f < sup | f(x) |.

X
Now let g{x'} be an arbitrary function from Lx and let 

||<?||x = C. Let <pn be a sequence of a. p.—M functions such that 
|99n(æ')| < C and <pn-^ g. Then || (pm — 9?ji ||z#*  “► 0 for in, n -> oc 
and hence by I, 1, 1. we can construct a /¿’-limit function /’0 of 
the sequence (pn from pieces of the (pn. Il follows that | /’0(æ) | ‘ C 
and that f0 = g. Since sup | f0 (x) | ' Halloo and since, as we have

X
seen previously, all Bx-a. p.—M functions / which are mapped 
in g have
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(2) sup |/’(.r)| > Il .7 IL.
X

we see that

(3) sup |/0(x) I = I] g |L.
X

The Æx-a. p.—M functions /’which are mapped in the same 
g from i/ belong in particular to the same ß*-a.  p.—M point, 
and hence they differ from each other by a bounded ß1-zero 
function, i. e., a Bx-zero function. Thus they belong to the same 
ßw-a.p.—M point. All functions in this point are mapped in the 
function g. Thus the contraction of the mapping f to the 
set of ß°°-a. p.—M functions can be considered as a one-to-one 
linear mapping of the ßw-a.p.—M space on the space L°°. From 
(2) and (3) we can now conclude that for any ß°°-a. p.—M 
function f we have

||f IL = inf SUP |/’(æ) + z(æ)| = II/’IIb00
Z X

where z runs through all ß°°-zero functions. Thus the contracted 
mapping is isometric. Using that

p -> oo p -> oo

we get the other expression

II/’IIb00 = lim II/’IIb/'
p -> 00

for the ß°°-norm. This completes the proof of 1.
Finally we shall prove 6. Since this part of the Correspondence 

Theorem will not be used in the following we shall treat it shortly. 
It is known that every real ß1-a. p. function possesses an asympto
tic distribution function. We shall use a proof of this theorem 
which was communicated to the authors of [5] by Jessen and 
published in [5], pp. 101—103; in order to save space we shall 
assume that the reader knows the proof and the notations used 
therein. It is easily seen that the function 0 (/'(.t)) occurring 
1. c., p. 102 can be written
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Hence 

ø (/-(.r))
t (/•(.r)-/g)+-(f(.r)-g)

ß~"

so that
(«*(/»' = <i>(.n

Then 6. is a simple consequence of the inequalities

(«> Mb {0 («}>?(«)

which were proved I. c., p. 102 and the corresponding inequalities 
for the function f'.

This completes the proof of the Correspondence Theorem.

3. Application of the Correspondence Theorem to a 
proof of the Main Theorem.

If in the Main Theorem we replace the Bp-a. p.—M space by 
the space Lp and the Bq-a. p.—M space by the space Lq and the 
mean value M by the Lebesgue integral \, we obtain a classical 
result of F. Riesz which is valid even for spaces Lp in the abstract 
case. A proof of this theorem is given in [9], Chapter III, p. 42 
and p. 47.

By use of the Correspondence Theorem we shall now deduce 
our Main Theorem from F. Riesz’s result. Let p be a fixed 
number, 1 5íp<oc. It follows easily from the Correspondence 
Theorem that the mapping

(4) A-+A'

where A is a bounded linear functional on the Bp-a. p.—-M space 
and A' is the functional on the space Lp over /?M defined by

A'f = Af

is a one-to-one linear isometric mapping of the dual space of 
the p.—M space on the dual space of the space Lp. However,
on account of Riesz’s theorem the mapping

(>’)
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where
AAD = Sf(F)

is a one-to-one linear isometric mapping of the dual space of 
/?' over 7?M on the space Lq over 1?M. Finally, by the Correspon
dence Theorem the mapping

(6)

is a one-to-one linear isometric mapping of the space L7 over 
/?M on the Bq-a. p.—M space and

P'(F) =
for every Bp-a. p.—M function f and every Bq-a. p.—M function 
g. The mapping

which results from the mappings (4), (5), (6) is then a one-to-one 
linear isometric mapping of the dual space of the Bp-a. p.—M 
space on the Bq-a. p.—M space, and

A„f= =

This completes the proof of the Main Theorem.

Appendix.
I’he following theorem shows that for a given module M of 

real numbers and a fixed p, 1 p < oc, the Bp-a. p.—M space 
and the VVp-a. p.—M space have the same dual space.

Theorem. Let M be a module of real numbers and p, q tmo 
numbers, 1 p < oc, 1 < q < oc, satisfying 1/p + 1 /</ — 1. 
Then the dual space of the Wp-a. p.—M space is isomorphic to 
the Bq-a. p.—M space. The isomorphic mapping is given by Ag—> g 
where Ag is the bounded linear functional on the Wp-a. p.—M 
space given by Agf = fg}.

Proof. For any H7/,-a. p. function /we have || f\\l{i> = ||/’||wp, 
for by I, 1, 5. the function |/'(.r) |p is Mzl-a. p. so that
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lim i^|/’(æ)|Prfæ
T -> oo 1 ’a

exists uniformly in a. Further every Bp-a. p.—M function may 
be /^’-approximated by Wp-a. p.—M functions, for it may even 
be /^'-approximated by a. p.—M functions. It follows from this 
that every bounded linear functional on the \Vp-a. p.—M space 
extends itself in unique fashion by Bp-continuity to a bounded 
linear functional on the Bp-&,. p.—M space with the same norm 
as the original functional, and that conversely every bounded 
linear functional on the Bp-a. p.—M space induces a bounded 
linear functional on the Wp-a. p.—M space. Our theorem is then 
a consequence of the Main Theorem.
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The causal behaviour of field theories with non-localizable inter
actions of the Kristensen-Moller type is discussed in the perturbation 
approximation, with particular attention to interactions involving only 
particles with time-like momentum vectors. Causal behaviour is under
stood to imply that all observable particles of positive energy are pro
pagated at a velocity less than the velocity of light. It is shown that 
the causal behaviour of the non-local interaction theories is determined 
both by the location of the singularities of the propagation function, 
and by the continuity of the various derivatives of the form function. 
It is further demonstrated that, by choosing these derivatives to be 
continuous in sufficiently high orders, the probability of observing 
signals propagating with a velocity greater than that of light may be 
made to decrease more rapidly than any arbitrary inverse power of 
the distance between the points at which the signal is observed. The 
relation of this work to other treatments of causality is discussed.

1. Introduction.

onsiderable interest has recently been attached to discussions
of field theories involving non-local interaction, that is, field 

theories in which the interaction term in the Lagrangian involves 
the field variables at different points in space and time. Following 
Kristensen and Møller'1', this interaction term may be 
written as1

Lint = — d*x'  dW d*x'"  xp+ (.r') 0 (x-") (1.1 )

in which 0 is the form factor of the interaction and
will in general be a product of a matrix operator and a function

1 We shall use the notation F (123) for F(xf^,x^,x^). The adjoint field is 
denoted by ip+, and may be taken as ip+ = i/>*y i, with ip*  the Hermitian con
jugate to ip. Further, the inner product of two four-vectors is indicated by 
a-b = a b = a b -a°b°.

1*  
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of coordinates F (x'x"x"'). Utilizing the various invariance con
ditions which may be placed on F, we may expand it in momentum 
space as

F(Vx"x") = (23i)-8U4'irf4'3G('A) I

X exp i [I, (x' — .r") + 13 (x" - x")J,

where G is a function only of Zf, Z3, and (Zx + Z3)2.
Of especial importance to any investigation of a theory of this 

type arc the questions, first, whether such a generalization of the 
usual theory can bring about the desired convergence of integrals 
representing matrix elements, and second, if it can do this, what 
effects this generalization would have upon such properties of 
the theory as its causal behaviour. Bloch(2) and Kristensen(3) 
have shown that, in order to gain convergence to all orders of 
the coupling constant, it is sufficient (and probably necessary) 
to require that G (ZXZ3) vanish if any of the vectors Zx, l3 or 
Zx + I3 is space-like. This is a rather serious restriction; in fact, 
it eliminates the possibility of obtaining the usual local theory as 
a limiting case. It has been felt that such a restriction may per
haps lead to acausal behaviour for the particles described by 
the theory. It is the purpose of this paper to investigate in some 
detail the commensurability of such an assumption with the 
causality requirement, and to show in what sense we may say 
that causality is preserved. A theory will be said to exhibit causal 
behaviour if it predicts that all observable signals or particles 
of positive energy are propagated only in a forward direction in 
space-time, and at a velocity equal to or less than the velocity 
of light.

Discussions of the application of the requirement of causality 
to the non-local interaction are not new, of course. For example, 
Bloch(2), and later Chrétien and Peierls(4), have determ
ined what properties the form function must possess in order 
that the interaction be limited to a small region in space and time. 
In substance, their result is that, if the form function in mo
mentum space, G (ZJ3), is sufficiently smooth, then the interaction 
involves essentially only field variables at points close to each 
other. Smoothness here implies the continuity of the various 
higher derivatives of G with respect to I2, Zf, and (Zi — Z3)2. This
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question is, however, somewhat different from that discussed by 
Fierz^5) in his analysis of the causal behaviour of the local 
theory of quantum electrodynamics. It was pointed out there 
that, for the causality requirement to make sense, it is necessary 
to discuss only observable signals. This means that the predicted 
matrix element for some measuring process as a whole must be 
examined. It was shown that, if a particle (specifically, a photon) 
of positive energy is absorbed at an approximate distance r from 
its point of creation, such absorption must take place at a time 
at least r/c later than its time of emission. It is apparent that 
this discussion does not correspond to that given by Bloch or 
Chretien and Peierls. A simple demonstration of this discrepancy 
is provided by a local theory in which the Feynman or causal 
Green’s function AF = zl1— 2 i A is replaced by its complex 
conjugate AF. This would certainly satisfy the conditions of Bloch, 
and Chrétien and Peierls, since the interaction would only involve 
the field variables at the same point. Nevertheless, such a theory 
would not satisfy the Fierz condition, which we might call 
“causality in the large”, because the absorption of a particle of 
positive energy would actually occur before its emission. In the 
course of our examination of the properties of the restricted non
local interaction, we shall find the distinction between these con
ditions appearing in a rather natural way.

Perhaps it should be mentioned that this work is rather 
distinct from that of van Kampen(6) and others, who have 
established rather general conditions on the S-matrix for scattering 
in classical and first-quantized theories. Their interest is mainly 
concentrated upon determining the properties for cross sections 
and bound states following from conditions which are, in a 
sense, weaker than those above, but which must be followed 
rigorously. This involves a somewhat different emphasis, re
sulting from a different point of view concerning the causality 
condition.

Essentially, it is possible to start from a given set of properties, 
including, say, some sort of causality condition, and from these 
to deduce certain characteristics which must be possessed by 
any theory containing these properties. This is the approach of 
van Kampen, mentioned above. On the other hand, it is also 
possible to begin with a definite theory or class of theories, and 
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to deduce to what extent this theory possesses certain desired 
properties. This is the approach which has been used by Fierz, 
and which will be adopted here. It contains one definite advantage; 
namely, if we begin with a causality condition, and use this to 
restrict the form of the theory, then we must, of course, use a 
condition which can be expressed in specific terms, and which 
must be adhered to rigorously. However, it has been pointed 
out previously that such a condition in a quantum theory will 
tend to be rather weak, primarily because of the inability to 
assign precise values of the momentum and position to a particle 
at two different times. Therefore, it seems better for our purposes 
to begin with that specific theory in which we are interested, 
and to examine its predictions for those processes which will 
exhibit most clearly its causal or acausal nature. These pro
cesses are just those which describe physical methods for meas
uring the velocity of propagation of a particle. The more general 
approach, while more difficult in application, might be expected 
to throw considerable light on the structure of S-matrix theory, 
particularly if the same sort of causality condition as that used 
here could be formulated in a more definite manner. One of 
(he problems involved in such a treatment would be the construc
tion of certain types of localized states. We shall attempt to avoid 
such difficult questions by the use of a more intuitive approach.

Several basic assumptions and limitations will be introduced 
here in order to simplify the discussion. The most important of 
these involves the application of perturbation theory to the cal
culation of matrix elements involved in determining the causal 
behaviour. In particular, we shall assume that, if the results of 
the lowest order perturbation calculation indicate a causal be
haviour, such behaviour will carry over into the higher orders. 
Causality will be seen to be intimately connected with the form 
of a certain product of the Green’s function AF and form functions 
F(x'x"x"'). In the higher orders, the same product is merely 
repeated a number of times. If this product is of the proper 
form to ensure causality for the first non-vanishing term in the 
expansion, we may expect that the higher orders will not in
troduce difficulties. Wherever possible, we shall attempt to in
dicate what modifications are introduced in the higher orders. 
The entire structure of our analysis might not make any sense 
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if the perturbation method itself is not valid, of course. Such 
questions, while important, are not to be discussed here.

For convenience, only two types of particles will be con
sidered, one possessing charge conjugate states and spin one- 
half, and one Majorana neutral particle. The fields describing 
the former will be denoted by 7; and and (p will be used for 
the field of the neutral particle. Both the neutral particle and 
the coupling will be assumed to be scalar. At times we may find 
it convenient, for giving a physical picture of the processes con
sidered, to refer to these particles as nucleons and mesons.

Finally, we shall only be concerned with the causal or acausal 
behaviour of the field; that is, we shall only require that the 
neutral particle have a velocity less than that of light. This makes 
it possible to treat the ip and ip+ fields non-relativistically if 
desirable, which can simplify the discussion. It is obvious, of 
course, that a similar treatment of the causality properties of 
the ip and ip+ fields could be given, with essentially 110 modi
fication of the procedure.

2. Limitations on the Causality Condition.

As indicated previously, it is extremely difficult to give an 
exact criterion for causal behaviour of a theory, primarily due 
to the limitations imposed on the measuring process by the 
quantum nature of the theory. We shall now examine this 
limitation more closely. Essentially two types of measurements 
are involved in determining causal behaviour as defined pre
viously. These are: the determination of the location of the 
particle at two different points in space-time, and the measure
ment of the sign of the energy of the particle. If the theory is 
second quantized, then of course the points of position measure
ment are just the points at which the creation and destruction 
of the particle in the given state occur.

It is rather clear that the operator measuring the position of 
a particle, the eigenfunctions of which are the so-called localized 
states of the particle, does not commute with the energy operator. 
This, however, is too much to expect; all we really would need 
for a precise formulation of the causality condition is that the 
position operator commute with the operator determining thé 
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sign of the particle energy. Expressed in other words, we would 
require that the localized states of the system he composed only 
of positive (or only of negative) energy components. That this 
should be so seems extremely unlikely, and we therefore expect 
that the position of the particle, or its points of creation and 
destruction, may only be defined to within a certain distance. 
This distance may be taken to be of the order of the Compton 
wavelength of the particle, h/mc, which is the position uncer
tainty we would obtain using states which arc described by the 
usual minimum wave packets familiar in ordinary quantum 
mechanics. Furthermore, we should also expect to be able to 
determine the sign of the energy of the particle with only a certain 
probability; this probability may be large, but not equal to one. 
W ith these limitations, our statement of causal behaviour be
comes as follows: to the extent to which the energy of the particle 
is known to be positive, and to the extent to which its points 
of creation and destruction may be determined, these points must 
be separated by a time-like distance, and the point of destruction 
must occur later than that of creation. At first glance, we might 
be tempted to require also that the particle energy be greater 
than me2, i.e., that the particle be real, not virtual. On the other 
hand, the existence of an appreciable probability for finding a 
virtual particle propagating at a velocity greater than c at a 
distance from its point of creation large compared to h/mc can 
also be considered to be a violation of causality. It seems reason
able, then, to include virtual particles in our discussion. This 
question does not arise in the usual local theory, for there we 
know that the range of the interaction produced by the exchange 
of a virtual particle of mass m is of the order of h/mc, no larger 
than the fundamental uncertainty in the position measurement. 
There appears to be no reason to expect this range to be any 
shorter in a non-local theory. Conversely, we also may regard 
this as a reason for not choosing our position measurement 
more accurate than h/mc, for the existence of virtual particles 
prevents any more accurate formulation of the causality con
dition.

With these considerations in mind, we now may give a 
general description of the type of process the investigation of 
which should prove most interesting and decisive with regard 
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to causality. We might expect such processes to be the simplest 
ones possible which create and subsequently destroy a meson; 
that is, the interaction ol‘ two nucleons by means of the meson 
field. The process should provide some method of determining 
where and when the meson is created and destroyed; this may 
be done by determining where the nucleons which emit and 
absorb the meson change state. Furthermore, the energy of the 
meson may be determined from a knowledge of the energy 
change of the nucleon involved in its emission. These require
ments mean that the nucleon states must not be described by 
momentum eigenfunctions, but rather by some sort of wave 
packets, which also permit a certain localization in space and 
time. In principle, from a knowledge of the nucleon states in 
the infinite past and in the infinite future, we may deduce the 
properties of the particle field which transmits the interaction 
between the two nucleons. It docs not matter whether we assume 
such interaction occurs by the exchange of one or many mesons; 
in either case the causality condition should be satisfied.

It also should be noted that, if the initial and final states of 
the nucleons are chosen to be free particle states, i.e., some 
superposition of plane waves, then an additional interaction 
with the meson or some other field must be introduced to provide 
long range (greater than h/mc) interaction between the nucleons. 
This is, of course, a consequence of the conservation of energy 
and momentum, which forbids the absorption or emission by 
free nucleons of any save virtual mesons. This additional inter
action may either be with a prescribed external field, or else 
with the meson field or some other quantized field. In the latter 
case, the additional field also should be described by states 
which are represented by wave packets. In the next section, we 
shall present two types of processes which can throw light on 
the causal behaviour of the theory, and show that essentially 
the same answer would be obtained in an analysis of either 
of them.

3. Measuring Processes.

Whether or not a theory is causal can be determined from the 
predictions it makes for various special processes. In this section, 
we shall consider several representative examples of such pro- 
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cesses, which are of the general type discussed previously. We 
shall show that both of these “Gedanken” experiments lead to 
a condition essentially the same as that of Fierz.

In the interest of simplicity, we may begin with a case in 
which two nucleons in different potential wells interact by means 
of the intermediate meson field, the dropping of one nucleon 
from its initial state to a lower level causing the excitation of 
the system containing the other nucleon to a higher state. Since 
the treatment of bound states in a field-theoretical manner would 
introduce several complications into our discussion, we shall 
assume that the nucleons in the potential well are not described 
by a quantized field, but merely by simple Schrödinger wave 
functions. This means that we may not use a three-point form 
function, but rather consider only a non-local interaction be
tween the meson field and a source density, represented by the 
nucleon wave functions. The corresponding problem in electro
dynamics involves the exchange of excitation of two different 
atoms by means of the radiation field. The approximation of 
treating the nucleons by Schrödinger functions is somewhat 
better than the familiar semi-classical radiation theory, in that 
the possibility of virtual-pair formation by the meson field is 
contained in our discussion. Effects corresponding to the radiative 
corrections in emission and absorption are not included, however.

The use of a potential well serves to localize the emission and 
absorption of the meson in space, but not in lime. In order also 
to establish a time for these events, we may consider that the 
population of the nucleon states varies as a result of other un
specified interactions with other particles. This changing po
pulation results in a time-dependent normalization for the 
particles in each potential well:

¡¡ (Px y*  (X, /) y>(x, t) = \f (f) I2, (3.1)

and might be described by introducing an additional imaginary 
potential V' — iti [In /’(/)]' into the Schrödinger equation, which 
becomes

[H«+ V' (i)lv(O = a.^,

/yo = __ p2 + V(x).
(3-2)
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In particular, the function /’(/) should be appreciably different 
from zero only over a certain time interval.

Consider first a potential well with center at the origin. If 
the potential V (x) is chosen to be spherically symmetric, then 
the solutions to (3.2) may be written as

Vnlm - fn (0 «n (?) (& > <P) exP - Z (Ejh) I, (3.3)

in which the utl are the normalized radial parts of the energy 
eigenfunctions of the unperturbed Hamiltonian H°. The Tzm are 
chosen to be normalized so that their square integral over all 
angles is unity.

Now we return to our original problem of the two nucleons. 
Consider two different potential wells, one with center at x, and 
with particle states which have a maximum amplitude at time 
.r°, and the other with a center al y, and a maximum state am
plitude at time z/°. We denote the wave functions of the nucleon 
in the first well by y»1, and those of the nucleon in the second 
well by y2. Then the S-matrix element for a transition in which 
the nucleon in the first well goes from state nlm to n'l'm', and 
nucleon 2 goes from n’l'm' to nlm, will be proportional to the 
i ntegral

I y) = jj d4.r'd4J// Vnlm (I/') Fn'Z'm' (?/') I 

X (U' — Vn’l’m’ (æ') V’nlm (x')- I

Here, ÂF (y' — .r') is some sort of Green’s function describing the 
propagation of the meson from the point x' to the point ij'. Il 
may be assumed to contain the effects of a non-local interaction 
between the meson field and the nucleon source density. To the 
lowest order in the coupling constant for the meson-nucleon 
interaction, dF (y'— x') becomes just a non-local modification 
of the usual local Green’s function; we write it as

Jf(x) = (2jt) 2j¡d4Á-z1p(Á-)|y (Å-2)|2 exp (3.5)

with y (Á’2) some form factor in momentum space. 
Obviously, we have

(æ) = Vnbn O' ~ æ) ,

V’nlm (i/ ) Vnlm (U >
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where yniin (x) is the nlin wave function for a particle in a state 
centered about the origin in both space and time. As usual, it 
is most convenient to work in momentum space. We prefer 
spherical polar to rectangular coordinates, both for convenience 
in handling spherical potentials and, more important, because 
the causality condition only involves the separation of events, 
not their relative angular orientation. Accordingly, we also in
troduce spherical coordinates in momentum space, writing the 
product of two wave functions as

and expanding the function ZlF (À) as

¿F (*)  = Z,m Y'" <Pk) ^Fln, (k, k°).

Substituting (3.7) and (3.8) in (3.4), and using (3.5), we finally 
obtain

AO y) = 16^’2?

- ik° (.T» - y°) e (k, A") J„„, (A-, A«)

with

g (A, A«) = c (A»)*  : (A») tfa. (k)*  I y (A2 - A«2)|2 

r = I x — J I.
(3.10)

The coefficients C appearing in (3.7) and (3.10) are defined by
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\rM' \rM" \rm"
ÏL' 1L" 1 l”

__ V M V.W
- 2^LMhL'L"l-,L *l >

(3.11)

and the summation in (3.9) extends over L, L', L", I", M, M', 
1 ffr 11M , m .

If the function f (/) „which limits the wave function in time 
is not chosen to decrease to zero too sharply, then q (k, k°) will 
have a strong maximum at k° = (En>— E^/hc. To see this, we 
need only recognize that C (P) = C [P + (En— En^)/hc], where 
C(P) is the Fourier integral transform of H the
energy of the state n, En, is much greater than En-, then we may 
consider that a meson of positive energy----- hk°/c is created
at or about x, and destroyed near y. Therefore, the causality 
condition requires that, if q (k, k°) is different from zero essentially 
only for k° < 0, ILM (.r — y) should be different from zero only if 
y is essentially within or on the forward light cone of x. This 
is just the sort of condition Ficrz obtains.

Of course, the better we define the time of the meson creation 
or destruction, the less well-defined is the energy —hEjc. The 
extent of the uncertainty in our condition may be estimated by 
choosing a particular form for f (t), for example, a Gaussian 
in time:

f (/) = exp —|y2/2. (3.12)

Then, £ (A’°) becomes

f 0°) = C/s 7) exp-i7-2 + (£„ - E„.)Mc]2, (3.13)

which is also a Gaussian function. Assuming that En— En> is 
much greater than me2, the meson energy is fairly well defined 
as positive if y ~ me2. With this value of y, the uncertainty in 
the time at which the meson is created, as measured by the 
width of the maximum in is of the order of h/mc2.
Thus, the causality condition cannot restrict the propagation 
properties of the meson to within a distance any smaller than 
~ ch/me2 = h/mc. This is a rather reasonable result, since we 
frequently think of the Compton wavelength as some sort of 
extension of the meson.
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The uncertainty in spatial location of the points of meson 
creation and destruction docs not play a role in the above dis
cussion, since this may in principle be reduced indefinitely bv 
decreasing the range and increasing the depth of the potential 
well. For example, for a squarewell potential, of range R and 
depth Vo, the nucleon wave function for energy En is appreciable 
only for r</? + |/—fi2/2d/Fn. For an s-state, this distance is 
much less than the meson Compton wavelength if Vo » (zn/Jf)mc2.

Although the previous measuring process contains the essential 
elements necessary to ascertain the causal or acausal behaviour, 
a major objection may be raised to it. This is that the nucleon 
was not described by a quantized field, but rather was assumed 
to obey a non-relativistic Schrödinger equation. The main reason 
tor doing this was that we wished to consider nucleons in bound 
states, but still avoid some of the difficulties which occur in pre
sent-day treatments of bound-state problems. Particular dif
ficulties may be encountered in applying theories with non
local interaction to bound states.On the other hand, our 
principal goal is to investigate the properties of a non-local 
interaction between two quantized fields, thus replacing one of 
the fields by an effective “source distribution’’, for the other 
field certainly limits the scope of our discussion.

Instead of arguing, as previously, that the non-local effects 
may be described completely by an altered meson Green’s 
function, we may propose a second process in which both nucleon 
and meson are treated as quantized fields. Accordingly, a scat
tering problem involving nucleons in states of energy greater 
than Me2 will now be considered. As remarked previously, it is 
necessary to introduce an additional interaction to permit the 
emission and absorption of non-virtual mesons. We shall choose 
this additional interaction to be with the electromagnetic field, 
thus involving only the nucleons and not the neutral mesons. 
The electromagnetic field will not be treated as an external 
field, but rather as being quantized according to the usual theory. 
Il is necessary, however, to assume that this nucleon-photon 
interaction is local, to avoid difficulties with both the gauge 
invariance and the construction of the S-matrix.

The particular measuring experiment is illustrated sche
matically in Fig. 1. We consider that initially we have two 
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nucleons and one photon, each described by wave packets 
containing only positive frequencies. The packets of nucleon 1 
and the photon appear to intersect (“collide”) in a region 7?x in 
space and time. The packet of the other nucleon, nucleon 2, 
passes through a second region, 7?2, well separated from 7?1. We

Fig. 1.

look for transitions to a final state in which we again have two 
nucleons and a photon, but with nucleon 2 and the photon now 
coming from 7Ç, and nucleon 1 from 7?1. The interpretation is 
then that nucleon 1 has absorbed the photon, transferring this 
energy to the other nucleon by the exchange of a meson, the 
energy of this meson finally appearing in the photon emitted by 
nucleon 2. If all the wave packets are chosen to be minimum 
packets in cither 7?r or R2, and if the photons and corresponding 
nucleons do not have approximately the same direction of 
motion, then the photon absorption and emission must take 
place in and around 7?T and 7?2, respectively. An analysis of the 
Compton effect shows then that the nucleon must lose its ex
citation energy by meson or photon emission within a region of 
dimensions of the order of magnitude of h/Mc. This is also 
ensured if the initial and final state wave packets of nucleons 
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1 and 2 are chosen so that they only overlap in regions Rr and 
/?2> respectively. Then to the extent to which the regions of inter
section, Rx and R2, are well defined, the emission of the meson 
and its subsequent absorption occur in R± and R2. But if the 
energies of both the photons are positive, then the meson going 
from 7?1 to R2 must have a positive energy, and our causality 
condition requires that the region R2 must lie on or within the 
forward light cone of R±.

Now let us turn to a description of the process by our field 
theory. We choose as the action 1

I ~ (æ) + \ d4.r (æ) + (I (123) ( 1 - 3), (3.14)

where is the usual free-iield Lagrangian density for a system 
of mesons, nucleons, and the electromagnetic field, described 
by operators y; ip “ ; Afl, respectively. The meson-nucleon 
interaction density is taken as

A/ (123) = —f//2 [y>+(l)<?(2)y(3) —y>(l)y(2)y>+(3)]F(123), (3.15)

and the interaction of the nucleon with the electromagnetic field 
is described by

¿EM (æ) - ie/2 [y)+ (,r) y^A^ (,r) y> (.r) — y> (.r) A^y^ (,r)]. (3.16)

A perturbation expansion for the S-matrix element for the 
process may be found by introducing a type of interaction re
presentation, in which only the nucleon-photon interaction is 
chosen for Hint. That is, the state vector in our interaction re
presentation, is related to that vector in the Heisenberg 
representation with which it coincides at /0, Y7),, by

(0 = i> exp-i\dt'\d*x'H EM(x')
•’to •'

(3.17)

with P denoting the time-ordered product. We put h = c = 1. 
The N-matrix expressed in terms of operators in this repre
sentation may be found by the method of Källen(8) and Yang 
and Feldman<9\ It is then possible lo write down the S-matrix 
in the Heisenberg representation, remembering that the Green’s
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function transforms as the product of two field operators at 
different space-time points. In the perturbation expansion, (he 
lowest order terms which have non-vanishing matrix elements 

between the states considered (each with two nucleons and one 
photon) will be of order e2 or e2g2 in the coupling constants. 
The terms of order e2p2 in the matrix element are of two types,

depending on whether the two photons interact with different or 
with the same nucleon. Sample graphs corresponding to these 
two types arc shown in Figs. 2 and 3. The other graphs differ 
only in regard to which one or two of the particular nucleon 
line or lines the photon line is attached. An exception to this

Dan. Mat.Fys.Medd. 29, no.2. 2 
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are the disconnected graphs, which correspond to no meson 
exchange; these give a contribution only because the initial and 
final states chosen l’or a particular nucleon are not orthogonal. 
These contributions, which include all those from terms of order e2, 
will be essentially negligible if the change in the mean momentum 
of one of the nucleons is large compared to the spread of 
momenta in the nucleon wave packet. Similarly, terms cor
responding to graphs of the type shown in Fig. 3 refer to pro
cesses in which the meson involved is virtual. Contributions 
from these may also be shown to be negligible unless Rr and /?2 
are separated by a distance less than fi/inc. In fact, with the 
restricted type of form factor in which we are particularly in
terested, these terms are identically zero. We are thus left only 
with graphs such as shown in Fig. 2. One part of the matrix 
element for the particular graph illustrated is

7 = e272/8 \d (1 . . . 8) F (123) F (456) V’(t (7) Ar/ (7) yvS (7 — 1 ) 

X (2 — 5) (3) y>c+ (4) 5 (6 — 8) Afie (8) yflipa (8), 

in which i/)a and ipb are the initial state wave functions of nucleons 
1 and 2, and and ipd are the final state wave functions. The 
other parts differ only by permutations of the initial and final 
state wave functions. The initial and final state potentials of the 
electromagnetic field are denoted by A¡ie and Av¡. Here again 
AF (,r) is the Feynman Green’s function for the meson field. 
The essential propagation properties of the meson field are 
rooted in AF and in the form factors.

The wave functions ^(t, ipc, and A^ie refer to particles which 
pass through region Rlf whereas y>h, y)d, and Avf describe particles 
passing through R2. If we denote by .Vj the midpoint of the region 
Rlt and by ,r2 the midpoint of 7?2, then we may define new trans
lated wave functions ip' by the conditions

O) = Va (æ + æi) 

y' (æ) = ipc (x + æx) 

A fie (æ) — ^fie (æ T æl)

O) = Vb O + æ2)

(æ) = Vd O + æ2)

Ar/ (,r) = Avf (,r + x2).

(3.19)

Then, the primed wave functions should all be in the form of 
packets passing through the origin; that is, at time t = 0 they 
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should be minimum packets with center at x = 0. The matrix 
element (3.18) may be written more simply in terms of the 
Fourier transforms of the wave packets and Green’s functions. 
The wave functions are expanded as

Va GO = (2 si) 2 ( <llk na (k) 1 Ó (A2 + .1/2) exp i k ■ x,

A' (X) = (2 si)“2 V ( d‘k N' (k) «„ (A) 1±£<L> 6 (A2) exp ik-x, 
r=l,2.’ 2

(3.20)

with similar formulas holding for the other functions. Here,
(k) is a unit vector in the direction of polarization r, and, as 

a consequence of the supplementary condition on the potentials,

^N¿(A) = 0, r = 1,2, (3.21)

for transverse polarizations r = 1,2. The functions va must 
satisfy

ó (À-2 + A/2) (y^ + iM) va = 0. (3.22)

Using the expansions (1.2) and (3.20) for the form function and 
the wave functions, we obtain

I = e^/s J d‘k (A) M2 (A) (i) exp i k ■ (x2 - x.), (3.23)

with

V, (A) = (2 ,)-» J Z »t (*.  + «.- A) r„

X 0« (*i)  («!> l±h*l)  l±£hl> 1 ±¿0'1+_x12Lp

X ó (A2 + J/2) ó (z,)2 6 [Å-, + z, - A)2 + J/2] G (A, + z, - k, - k, - z,) ;

(3.24)

14 (A) = (2 sr)“3 j d‘k2 d^Z^’r "S

< t,b (A, + z2 - A) ar/ (z2) 1±e M 1+QA2--A + *2)

< ó (kl + A/2) Ô (x“) ó [(k2 — k + x2)2 + Af2] G (k2 + x2 — k2, - x2 + k) ; ,

(3.25)

and
(A) = — 2 z (2 tt)-2 [A2 + Af2 ze]“1.

2*
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In general, the form of d/1 (7¿) and 472 (//) will depend upon 
the particular choice ol the form factor in momentum space, 
G(Jlf an(l on the form of the wave packets selected. How
ever, two properties of considerable importance for our purposes 
may be deduced without further specialization. The first of these 
is that

.V, (Å) = .V2 (O = <> for (3.27)

which means that only the positive frequency components of 
dj,' (Å’) need enter into our analysis. Of course, (3.27) does not 
eliminate contributions from space-like vectors k with k° < 0, 
but such vectors may all be transformed into vectors with positive 
frequency components by proper Lorentz transformations. We 
shall in fact later require that the propagation Green’s function 
be such that the virtual particles described by k2 > 0 give only 
short-range effects.

Consider the definition (3.24) for 3/1(Â>). The integrals con
tain a factor

å (kf+M*)  ó (x?) i | - k-y+1 + c (kl) 1 '■ f( ’ '-+-c a\+ _ k)
2 2 2

= ô (7»q + 7I/2) <5 (x^) Ô [k2 2 Âq • xr — 2 k ■ -f xx)]

1 +£ (7q) 1 +e (xx) 1 + e (Aq + xx— k)

(3.28

But if a and b are two time-like vectors, a -b is positive if a° and b° 
are of opposite signs, and negative if they are of the same sign. 
Hence,

F + 2 Åq-xx — 2 Á -(Áq + xx) < 0 (3.29)

for all vectors k such that k2 < 0, k° < 0. Thus, for these vectors 
the d-function is always zero, and the integral vanishes identically. 
A similar argument holds for d/2 (7t ). Therefore, our integration 
in (3.23) only need go over space-like vectors k, and over time
like vectors with 7<°>0.

The second general property of Mx (Á) and M2 (A) deals with 
their smoothness when considered as functions of the vector k; 
that is, the continuity of their derivatives of a given order with 
respect to k. It may be shown that, if G (Zx, Z3) and the various 
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functions u(/<),ar(x) are sufficiently smooth, and n is any 
finite positive integer, then the derivatives of Jíj (Á) and M2 (k) 
with respect to k and of nth order are continuous everywhere, 
except possibly at k2 = 0. This is not a completely trivial pro
perty, for the presence of the product of the various ¿-functions 
might be thought to introduce discontinuities in some higher 
order. For example, the integral

a
I (cd) = \dx\dyô(x-}~y — cc) (3.30)

Jo *'o

docs not possess a continuous first derivative I' (a) everywhere. 
In our case, the integral (k) is actually an integral over a 
five-dimensional surface embedded in the eight-dimensional 
space spanned by kl/bl, This surface is formed by the inter
section of the surfaces

¿? + 3/2 = 0, ^ = 0, ]
(3.31)

(kr + k)2 + M2 = 0, J

and depends upon k as a parameter. The desired smoothness 
results from the fact that the vectors and xlfl depend upon 
the five independent variables of the surface and on the para
meter k in a continuous manner, a condition which is not met 
for (3.30). For the proof, it is necessary, among other points, 
to show that the equations (3.31) have a solution for all values 
of k2 > 0 and of k2 < 0, k° > 0. This means that mesons of all 
momenta are to be involved in the matrix element (3.23).

With these properties in mind, and with reference to the 
matrix clement (3.23), we see that our causality condition takes 
a particularly simple form. It is: if q (k) = (k) M2 (k) vanishes
for k2 ( 0, k° ( 0, and possesses only discontinuities in its deriv
atives corresponding to those of the form factors entering into 
its definition, then the integral

7 = e2g2/8 \ d*k  o (k) AF (k) exp i k-(x2 — Xj)

must be essentially different from zero only if x2 is on or within 
the forward light cone of The relation of this condition to 
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that obtained from our previous measuring process, expressed 
in (3.9), is now apparent.

We are fairly sure of the validity of the use of a perturbation 
expansion to describe the interaction of the nucleon Avith the 
electromagnetic field, but it is a much more doubtful technique 
for treating the meson-nucleon interaction. It would certainly be 
desirable to know the effect of terms of higher order in g2 on 
the matrix clement, in the very least. Some of these terms will 
refer to processes such as the creation and annihilation of virtual 
nucleon-anti-nucleon pairs by the meson field. Neglecting the 
possibility of an interaction of these nucleons with the electro
magnetic field, these pairs may presumably be removed by some 
sort of renormalization. In any case, their only effect will be to 
modify somewhat the propagation function AF (k) appearing in 
(3.23). Since it introduces no more difficulty, we shall henceforth 
anticipate this modification, and replace AF (Å) by some effective 
Green’s function AF (k). Other terms will refer to nucleon self
energy effects and may involve the electromagnetic field in a 
rather complicated manner. Nevertheless, it is easy to see that 
such effects do not in essence change the argument. However, 
one type of term which is definitely not included in our con
siderations is the meson analogue of the radiative corrections to 
scattering. These essentially replace the meson-nucleon vertices 
in Figs. 2 and 3 by some complicated vertex parts. We shall not 
discuss the effects of such processes here, save to remark that 
in a certain sense, for our purposes, they may be equivalent 
to modifying the form factor F (123) somewhat. Whether or not 
they affect the causality properties depends to a certain extent 
upon the conditions which we obtain for F (123).

4. Asymptotic Expansion of the Integral.

We have seen that our causality condition requires a knowledge 
of the behaviour of the integral

/(.r) = J o (Á-) zl^ (Á-) exp i k-x (4.1)

for J X I yy l/m. In this section, we shall determine the properties 
of this integral in terms of the properties of AF (7c) and the func- 
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tion g (k). It should be noted first that the singularities of the 
integrand can be of two major types, First, the function AF (k) 
may introduce either poles or distributed singularities cul
minating in branch points. Thus the zeroth order term in a 
perturbation expansion of AF, which is just Feynman’s AF, has 
simple poles at k° = ± | k2 + m2 T z’e, e)> (). Furthermore, the 
function g (k) may have discontinuities in either itself, or in its 
derivatives. We introduce here the requirement that G l3) 
may possess such discontinuities only along the surfaces q = 0, 
/ß = 0, or (/1 + Z3)2 = 0. Then the discontinuities of o (k) will 
be limited to the surface k2 = 0.

It is possible to separate these two types of singularities into 
different terms. For example, the function q (7c) (k2 + in2 — z'e)—1 
may be written as

g(k,k°) _[ Q(k,k°) g(k,kL) Q(k,k°+) 1
Tm2^7e “ 7c2Tm2 - ie ~ (k°^kL) (7c(; - 7¿J ~ (Á^l1’ ) (Ál^Pj

; (4.2) 
ß(k.k°_-) e(k,k°)

(k’-kL'XA.-kk) '

where
Ä’°± = ± | ^2 + ;n2T ie (4.3)

Then the term in brackets in (4.2) no longer possesses the poles 
at k° — k°+ or k{L, while the second and third terms do not have 
the discontinuities of q (k). Distributed singularities may be 
handled in the same manner, save that now the coefficients of 
the subtracted terms should be otherwise analytic functions 
which coincide with o (k) AF (7c) along the branch cut. After this 
is performed, the function q (7c) AF (k) may be written as the 
sum of two functions, f (k) and g (k), in which f (k) has no 
singular points other than the discontinuities of q (k), and g (k) 
has only poles and branch points corresponding to those of 
zip (7c). Furthermore, g (k) can have no singularities in the 
region k2 < 0, Á’0 < 0, for here q (7c) = 0, and the coefficients of 
the subtracted terms must be zero. We now may consider 
the Fourier transforms of the two functions f(k) and g (k) sepa- 
ratelv.
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(4.4)

(4.5)
Im

,•>00

(4.6)

(4-7)

'Filen

F > Á'02;+ »

V = o

— 9

where

(4-9)

L

k2 < Á-02; 
k° > O ;

Á’2 < Á02; 
F<0 ;

(4.8)

It is convenient to expand I1 (.r) in spherical harmonics, obtaining 

P (x) = f/(2 71«) Z i‘ Yr (» > V) Ilm 0. æ") .

derivatives of order A7 + 1, for any finite N.

An asymptotic expansion for (r, æ°) may be obtained by a 
method which is a slight generalization of that given by Willis(10). 
If flm (k, k°) is square integrable, then we may write

£2.7? v (0,0) kn~° kOv + Ri

"~vv (0,0) kn~v kOv + Rn-i Â

> rl’

.^/(À-,À-o),

where
!,lm (r, x°) = i dk k'+ 1 j, (kr) ( dk« flm (k, Å») exp - ik«x«,

<-’() — 00

f(k) = Z YI“ (»k, <pk) flm (k, k«) k1-1.
Im

We know that, save on the surface k2 = k02, f (k, k°) possesses 
continuous 
we have

N —1
(í-, k°) = y

n = 0

= Ä l<"~rk',v + R- + ,

Ö

Consider first the integral

/i (æ) = (9 ^)-2 J d*k  f (k) exp i k-x.

— V C 
dk^ 

dn — v
+ v'’ * "

cfl — V r\V
f2.~^(0,0) = L I. °1 °f(k,k«).

k2^k02—k°->()~Ok Ok

f"~vv(o,O) = L L
k2->k?2—k0 + 0 ■+

, X
Iim (r, .t°) = L L \ dk kl + 1./) (kr) exp — ark 

al -> 0 cc2 -+■ O^O
,t00

X \ dk« flm (k, k-0) exp [— ik«x« — «211» I ].
•/---- 00
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The use of the subscript plus and minus signs is in cognizance 
of the fact that the derivatives of the function f(k, Á’°) may be 
discontinuous across the surface Æ2 = Å02. The remainders in 
(4.8) may be written as

-4- °<^<!• (4-i())
N ! ——' \ V /

j, = o x 7

If we introduce

C« — V rjV 
and denote n~-v—v<p («i«2) by (pn~v v («x«2),

O «i 0a2

we have

= L L
«,->0 a2->0

+ fl\vv (0,0 V v + f-~v v (0,0) ^-vv (axa2)] + /U.

The remainder here is given by

= y [C+ ^.-rv (aia2) + C_+<p^-vv («,«,) + C__ ^z’”(a1«3)]; (4.13) 
V = 0

Im (r, x°)
1(—'}n n I 'n\ 2. (") ir+~VV (°’0) " (',,K2)

the coefficients C may be shown to be finite if fN~vv js of bounded 
variation. We shall henceforth make this assumption. All that 
remains in order to obtain an asymptotic expansion for (r, .r°) 
is to evaluate the coefficients <pn~vv («1«2). bi general, this can 
be done only in terms of an infinite series in either r/x° or x°/r, 
according as r is less than or greater than | x° |. We find, for 
r > I x° I,
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= 2Z+1 (—Z)n + 1r-

n — vvs \ — V V / \ rn — v v / \
<P + {a1a2)=~(p_+ («i«2) — ----

= y — o+’Ikm’ _ (.r»/;.y
(2 cr — zi H-r) er ! (2 cr — zi — 1)!V /7 

<T > 2 (H + 1)

(4.14)

in which only terms of order n'i, have been retained. If I¡m 
is rewritten as

- (0,0)] + ç,!-”” (ßl«2) irz’”’ (0,0) - (0,0)]} + fiN,

we see that (r, x°) decreases in a space-like direction more 
rapidly than n—’ ~‘3if fn~vv (k ,k°) is continuous across the surface 
k2  ¿02 ypg coefficient of the term of order f~n in an asymptotic 
expansion is thus of the order of magnitude of the discontinuity 
in the n-4th derivative of q (k). This agrees with a simple cal
culation of the effect of a discontinuous form factor upon the 
propagation of signals.

Similarly, if |.r°|>r, we have

n —v v 
r— + = 2,+1 (-)'(+ /)"
g,n~V V = 2Z + 1 (_y- r æO-n-Z-3

<? + («1«2> n — v V / \(P— + Ve 1^2) n — r r z X_ Ç9------ (^1^2) >

\ "" (Z4~ g) ! (2 cr + 2/ +n + 1) ! .
___  (2o + 2/ + n-v + 2)(g)!(2ff + 2/+l)!v '' 
O’ = 0

(4.16

In this case, (r, x°) decreases in a time-like direction more 
rapidly than x0 —n —z —3 if fn~vv (k, k°) is continuous across the 
light cone.

The case of r == | .r° |, that is, on the light cone itself, requires 
special attention. For r = | ,r° |, neither the infinite scries in 
(4.14), nor that in (4.16), converges, and hence our method for 
obtaining the asymptotic expansion breaks down. We might argue 
on physical grounds that the indeterminacy of the behaviour 
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on the exact surface r = a>0, which is of zero measure, should 
introduce no difficulty. A more carefid analysis, however, re
quires that we examine the behaviour of the integral of I (r, .r°) 
taken over some small volume clement spanning the light cone, 
in the limit in which this clement is located far from the origin. 
If this is done, we see immediately that at worst the decrease 
with distance from the origin goes only as r~n~2, for functions 
with discontinuities in the nth derivative. Thus no real problem 
is presented by this singular case.

The continuity of the derivatives of and hence of
f (k, k°), may be related to the continuity of the derivatives of 
G (Zx, Z3) with respect to (Zx + Z3)2 = k2. We are particularly 
interested in the case where G (Zx, Z3) vanishes for (Zx + Z3)2 
greater than zero. For this type of form factor, q (k) will have 
derivatives of order 2n continuous across the surface k2 = 0, 
if G Z3) has derivatives with respect to (Zx + Z3)2 of order n 
which are continuous across (Zx + Z3)2 = 0. The factor two 
arises from the fact that q (k) contains the product of two form 
factors. The discontinuities in the derivatives of the other factors 
in M1 (k) and J/2 (k) will play no part if the first n derivatives 
of G (Zx, Z3) with respect to (Zx + Z3)2 are zero al (/x + Z3)2 = 0, 
as they must be if G is to vanish identically for Zx + Z3 space-like.

Thus far we have been concerned only with the integral I1. 
The discussion of the Fourier transform of g (k),

I2 (,r) = (2 d4kg (k) exp ik-x, (4.17)

is fortunately very simple. We have already remarked that g (k) 
contains only singularities in the regions k2<0, k° > 0, and 
k2 > 0. If these singularities all lie in the lower half of the complex 
k° plane, then I2 (.r) vanishes for ,t° < 0. Similarly, if they lie 
in the upper half plane, then I2 (,r) vanishes for .r° > 0. This 
follows directly from an evaluation of I2 as a contour integral 
in the complex k° plane, a procedure justified by the meromorphic 
nature of g (k). Thus, in order that /2 (,r2 — ;rx) give contributions 
only for .r2 within or on the forward light cone of a* x, it is necessary 
that g (k) should have poles only at points k° — K°, where 
Ini K° < 0 if Re K° >0. If we had arranged conditions so that the 
meson absorption occurred at .xx and its emission at .r2, then 
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the requirement would have been Im K° > 0 if Re K° < 0. How
ever, since the sign of k° may be changed by a Lorentz trans
formation only if |à'°|<|â|, then our requirements also become 
sufficient if we demand further that no singularities exist with 
Re K° < I k I. Since poles a finite distance from the real axis give 
rise to terms which are damped exponentially, the above re
striction should only involve those poles near this axis.

The results of the analysis presented in this section may be 
summarized as follows. Suppose that the singularities of the 
propagation function A'f (k) lie in the second and fourth quadrants 
of the complex k° plane, and at least a distance k from the 
imaginary axis, and that the function q (k) has continuous 
derivatives of the first n orders. Then the integral I (x2— Xj) is 
composed of two terms, one of which is different from zero only 
for (x2— xx)2 < 0, x2— x*i  ) 0, and the other of which decreases 
in any space-like direction or time-like direction more rapidly 
than the inverse n + 4 power of | xx — x21 or x[— x2, respectively. 
Furthermore, the decrease of this second term along the surface 
I x° J — r is sufficiently rapid so that its integral with respect to 
x2 over some small region centered at < x2 > decreases as 
|xi —- < x2 > |n + 3.

5. Discussion.

The results of the previous section point out rather clearly 
the distinction between the work of Fierz, and that of Bloch and 
of Chrétien and Peierls. The basis of the argument of Fierz is 
that, save for a part which damps out rather rapidly, the positive 
frequency part of the Feynman Green’s function AF propagates 
only into the forward light cone. The part which damps out is 
unobservable due to the complementarity existing between time 
and energy. This result is essentially dependent upon the location 
of the poles of I he propagation function in the complex k° plane. 
By the analysis given here, we find that our integral I2, which 
is obtained from a process selecting only positive frequency 
components of the propagation function, also represents a signal 
propagating only into the forward light cone. The difference 
between the analysis of Fierz and ours is that the unobservable 
damped-out term he obtains is, in our case, included in the 
integral I1.
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The analyses of Bloch and Chretien and Peierls, on the 
other hand, are mainly concerned with the effect of discontinuities 
in the form factor. We have found it convenient to include such 
discontinuities in the integral I1. It might be suspected, then, that 
their analyses are in some way comparable to that which we 
gave for I1. This is true in a formal sense if we generalize the 
interpretation given to the “source function’’ introduced by 
Chrétien and Peierls. The physical interpretation given to their 
integral containing the form function is considerably different 
from that which we have attached to ours, however. A type of 
connection between the two may be established, nonetheless. 
For this purpose we define a four-point “form factor’’, F (1346),by

F(1346 = Jd(25) F(123) dp (2 — 5) F (456), (5.1)

in which dp (2 — 5) is just that part of the propagation function 
remaining after subtracting off the singularities, in lhe manner 
of the last section. Then we may say that our demonstration 
that I1 (a-2 — æj) decreases rapidly with increasing distance 
J x2 — xx I or æ2 — *rt is somewhat equivalent to showing that 
F (1346) decreases rapidly as the distance from the points 1 and
3 to lhe points 4 and 6 increases. More exactly, and following 
the notation of Chrétien and Peierls, we show that, for functions 
cp (46) which are appreciably different from zero only when
4 and 6 are near the origin, (p (13) decreases as a certain inverse 
power of the distance of 1 and 3 from the origin, where <p> (13) 
is defined by

£ (13) = jjd(46) F (1346) cp (46). (5.2)

We found that the power of decrease of (13) depended upon 
the degree of smoothness of the Fourier transform of F (1346). 
Written in this manner, lhe similarity between our investigation 
of F and the investigation by Chrétien and Peierls of the function 

ÿ(13) = b/(2)f(123)<?(2) (5.3)

is rather obvious. The different methods used for obtaining con
ditions on the asymptotic expansions is purely a matter of pre
ference. In view of this similarity, it is not surprising that sub- 
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stantially the same condition is obtained here as was obtained 
by Chrétien and Peierls.

It seems fairly clear that, for a field theory with non-local 
interaction, two rather different types of conditions are obtained, 
both of which must be satisfied for causal behaviour. The first 
relates to the location of singularities, demanding that they occur 
only in the second and fourth quadrants in the k° plane, and at 
least a distance |ä| from the imaginary axis. This type of con
dition must also be satisfied for a local theory. In practice it 
restricts the particular choice of a Green’s function.

The presence of a non-local interaction, however, introduces 
an additional amount of freedom into the theory, by means of 
the form function G (l}, l3), which is not completely determined. 
This in turn creates the possibility for introducing discontinuous 
factors into the integrands of the integrals giving matrix elements 
for certain processes. These discontinuities will in general give 
rise to a type of acausal behaviour, unless the function G (Zx, /3), 
considered as a function of the variables /f, /3, (lx + Z3)2, is 
sufficiently smooth. The probability for observing signals trans
mitted with velocities greater than that of light decreases essentially 
more rapidly than an inverse 4 + 6 power of the spatial distance 
between the points of observation, if the G function has continuous 
deriviatives of the nth order.

The particular problem which we encounter in practice is 
that we wish, for reasons of convergence, to use form factors 
which vanish if either /{, Z3 or (l± + /3)2 is greater than zero. 
Certainly then G may not be an analytic function of these variables. 
On the other hand, we may construct a G fidfilling these con
ditions, and yet possessing continuous derivatives of any pre
assigned finite order. Thus we may require (he “acausal signals” 
to decrease more rapidly than as any pre-assigned finite inverse 
power. This is the extent to which causality may be preserved 
in our theory with non-local interaction.

The author is deeply indebted to Professor C. Møller, mag. 
scient. P. Kristensen, and Dr. R. Haag for many helpful discus
sions and suggestions on this problem. He wishes to express his 
gratitude to Professor Niels Bohr for extending the hospitality of 
his institute during the time this work was performed.
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I. Introduction.

X-radiations from /¿-mesonic atoms have been detected by 
Chang (1949) in cosmic ray studies, and more recently by Fitch 
and Rainwater (1953) working with artificially produced mesons. 
The mesons are captured in the outer Bohr orbits and cascade 
inward toward the nucleus, transferring energy by radiative and 
Auger transitions. The mesons arrive in the lower atomic states, 
for the most part, with I = n — 1 and proceed to decay by 
radiative transitions, with A I — An = —1, to the ground state. 
It is the 2 p to Is transition which has been studied the most.

In the low quantum states, atomic electrons do not affect the 
meson and the system may be treated as a hydrogen-like atom, with 
due regard to the characteristic effects of the mesonic mass. The 
level structure of the mesonic atom has been calculated for various 
nuclei by Wheeler (1949, 1953), Fitch and Rainwater, and 
Cooper and Henley (1953). Only electrical forces are con
sidered, since the /¿-meson interacts only weakly with nuclear 
matter. The meson is treated as a Dirac particle with spin 1/2 
and magnetic moment efi/2 pc. The mass p of the /¿-meson is 
207*  times the mass of the electron, and the Bohr orbits are 
proportionately smaller; in Pb, for example, the first mesonic 
Bohr orbit is 3.12 X 10“13 cm compared with a nuclear radius 
B co 1.1 X 10—13 cm. Nuclear structure effects, small in electronic 
atoms, become very pronounced in the mesonic atom. Indeed, 
the finite extension of the nucleus (which gives rise to isotope shifts 
in electronic spectra) becomes a dominant consideration in the 
mesonic atom; in Pb, for example, it accounts for the reduction 
of the Is state energy from 21.3 MeV for a point nucleus to 
10.1 MeV. This also results in a reduction of the fine structure 
splitting of the 2 p doublet from 0.55 MeV to 0.2 MeV in Pb.

* C. f. Smith, Birnbaum, and Barras (1953).
1*
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Nuclear moment splittings, analogous to hyperfine structure 
in electronic atoms, depend in general upon the expectation value 
of r—3 and are proportionately much greater in mesonic atoms. 
Wheeler (1953) has shown that, in the case of heavy nuclei 
with large distortions, the quadrupole splittings of the 2 p.,¡2 level 
may be of the same order of magnitude as the line structure. 
Magnetic h.f. s. splittings are not so greatly enhanced, since they 
also depend upon the mesonic magnetic moment which varies 
inversely as the mesonic mass; these splittings arc perhaps two 
orders of magnitude smaller than the tine structure.

For the effects mentioned above, the meson is considered in 
the static field of the nucleus and the nucleus unaffected by the 
meson. Cooper and Hex ley have discussed the polarization of 
the nucleus by the meson—an effect treated earlier by Breit, 
Arfken, and Clendenin (1950) for the electronic case—but 
estimated this effect to contribute not more than 3 per cent of the 
transition energy. Their estimate is based upon the Is mesonic 
level where the induced monopole effect dominates; higher 
multipole interactions (e.g., dipole, quadrupole, etc.) for the Is 
state involve non-diagonal matrix elements connecting mesonic 
states with principal quantum numbers n greater than one, and 
which are thus distant in energy.

In mesonic states with n > 1, however, the higher multipole 
interactions may be realized between mesonic states with the 
same principal quantum number, and when the nuclear ex
citation energy is also small, the interaction may become large. 
It is known from experiments on radiative lifetimes (cf. Bonn 
and Mottelson, 1953) and Coulomb excitation (cf. Huts and 
Zupancic, 1953) that in nuclei with large deformations there 
exist low-lying excited states which have very large quadrupole 
transition probabilities to the ground state. For these nuclei, the 
excitation matrix elements are comparable in magnitude with the 
static quadrupole interactions discussed above, and in many 
cases are larger than the nuclear excitation energies. The non
static meson-nuclear quadrupole interaction must thus be ex
pected Io have a major influence on the “fine structure” of the 
mesonic X-rays. It also provides a large probability that, after 
the meson reaches the atomic ground state, the nucleus be left 
in an excited state and subsequently emit a nuclear y-rav.
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These effects occur for even-even as well as for odd nuclei, 
since, although the quadrupole interaction vanishes in the ground 
state of even-even nuclei (/ = 0), it does not vanish generally 
in the excited states, and noil-zero matrix elements connect the 
ground state with excited states.

The effects of the interaction are of interest not only in under
standing the spectra, but especially in providing another method 
of obtaining information about the magnitude and sign of nuclear 
deformations and nuclear charge distributions. The mesonic 
atom may, in fact, provide the first method of determining the 
sign of intrinsic quadrupole moments in even-even nuclei.

IL Description of the Model.

The low-lying states which interact especially strongly with 
the meson follow7 a very regular pattern and have been rather 
accurately described in terms of rotational states of intrinsically 
deformed nuclei (Bohr, 1952, 1954; Bohr and Mottelson, 
1953). The theory of these states accounts for their nuclear energy 
spectra and also predicts many simple relations between matrix 
elements connecting the rotational states. These relations make it 
possible to greatly reduce the parameters entering into the cal
culations of the effects of the meson-nuclear interaction, and to 
interpret the empirical data of these effects in terms of simple 
nuclear properties. In the following, we shall describe the effects 
of the interaction of the meson with the excited nuclear states in 
terms of the model of the rotational states, even though the con
siderations involved in the calculation of the interaction are more 
generally valid.

Rotational spectra arc expected in nuclei with large defor
mations, and have been observed to occur with considerable 
regularity in nuclei with 155 < A < 185 and A > 255. Such nuclei 
may be described as possessing an intrinsic deformation which is 
usually symmetric about some nuclear axis. The rotation of the 
deformed nucleus is generated by a collective motion of the 
nucleons, which is similar to the classical motion of an irrotational 
Huid. The rotation leaves the nuclear shape unaltered and affects 
only the orientation of the nuclear axis. The state of the nucleus 
may be specified by quantum numbers I, Mj and K—the total 
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nuclear angular momentum, the projection along the z-axis, 
and the projection along the symmetry axis. In the low-lying 
rotational states, K is a constant and is just equal to the pro
jection of the angular momenta of the individual nucleons along 
the symmetry axis; for the ground stale, Io = K except when 
K = 1/2.*

The rotational spectrum is given by

Hn0T = + (1)

For odd-A or odd-odd nuclei, the sequence of states is I = Io, 
/0+ 1, /0 + 2, while for even-even nuclei, where Io— 
K = 0, the reflection symmetry of the nuclear shape implies that 
only even integral values of I occur.

The moment of inertia, 3, of such a system may be shown 
to be proportional to the square of the deformation, and the wave 
functions to be the properly symmetrized (with respect to the 
sign of Æ) symmetric to]) functions. The symmetrization depends 
upon the nucleonic configurations, and plays no essential role 
in the present discussion. For our present purposes**,  it is thus 
sufficient to consider the unsymmetrized nuclear wave functions

v'm.k = (2)

where the Oi are the three Eulerian angles (0, (p, ip') describing 
the orientation of the nuclear axes. For even-even nuclei, we 
have K = 0, and the wave functions are then given more simply 
by

vMlO = = .7*-  <2a>
I Ö.T y 2 71

The nuclear distortion is characterized by an intrinsic quadru
pole moment, ()0, oriented along the symmetry axis. It is related

* In the case K = 1/2, the spectrum is modified by the inclusion of terms 
which depend upon the nucleonic structure (cf. Bohr and Mottelson, 1953, eq. 
II. 24). The wave functions are, however, still of the form (2) and the discussion 
here does not depend upon the form of eq. (1).

** In section IV, where strong coupling of the meson to the nucleus is discussed, 
we will require an expression for the symmetrized wave functions. Equation (16) 
is thus analogous to (2) where the mesonic wave functions replace the nucleonic 
wave functions implied in (2). Cf. Bohr and Mottelson for a complete discussion.
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to the spectroscopically observed quadrupole moment Q by the
relation

31^-1(1 + 1) ( .
Q (/+l)(2/ + 3)

which vanishes for K = I = 0 or 1/2.
The interaction of the meson with the rotational slates arises 

from the deviation of the nuclear field from spherical symmetry 
due to the deformation. The most important interaction is due 
to the quadrupole coupling and may be written in the form

H' = -^Q0e2f(r)P2(cosfcN), (4)

where /¿A' is the angle between the meson radius vector and the 
symmetry axis of the nucleus. The function f(r), where r is the 
radial coordinate of the meson, contains the radial dependence 
of the interaction, and is given in general form by

Qo/’O’) = r_3 e(2) <r')du' +7'2 7>_5e(2) (?')(5) Jo T
where the primed coordinates refer to the nucleus and p(2)(r') — 
(3z'2— r'2) is the quadrupole part of the nuclear charge distri
bution and is oriented along the nuclear symmetry axis. The 
first integral in (5) gives just ()0 when extended over the entire 
charge of the nucleus. If the quadrupole distribution were con
centrated at the surface, the radial function could be written as 

f(r) =
r—3 if r > R 

r2R~5 if r <R,
(6)

where R is the nuclear radius. This may also be used as an ap
proximation for a uniformly charged ellipsoidal nucleus (cf. 
Wheeler, 1953).
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TIL Treatment of Coupled System of Meson 
and Rotating Nucleus.

The energy of the coupled system is given by

H = H,&Í)+HmT(6í) + H'(Í,9¡'). (7)
where .r and cr are the mesonic space and spin coordinates, and 
H0(x, (?) is the meson energy in the nuclear monopole field (i.e. 
the electrostatic potential averaged over all angles). This energy 
includes the fine structure splittings, and is characterized by the 
quantum numbers n, I (approximately), and j.

We shall consider the equations of motion in the uncoupled 
representation. We thus choose as basis vectors products of the 
nuclear wave functions K and the meson eigenfunctions of 
the monopole potential. The total wave functions of the system 
characterized by F, the total angular momentum and M, the 
projection along the z-axis, may then be denoted by

I IK, J ; 0V> = y: (IjM,m I 7/777) V' (0,) (.?, ?), (8)
M ¡in 1

where (Z/AZ; m | IjFM) is the Clebsch-Gordon coefficient for adding 
angular momenta. Both Ho and HR0T are diagonal in this repre
sentation.

The Legendre polynomial P2 (cos fiN) which appears in H' 
may be written as a scalar product of spherical harmonics of 
order two in the meson and nuclear orientation angles:

4 2P2(eos,<fv)= 5 (9)

The matrix elements for the interaction may then be written 
in the form (cf. Racah (1942) whose notation we follow)

aKfj-,F\H'\l'K',j';F'> = ; F2)O
X <777 II Y«> II 770 < j II II /> <J II f(r) II /> <WKK..

(10)
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The dependence of the matrix elements on F is contained 
only in the Racah coefficients, which may be evaluated from 
tables*.  The double-bar matrix elements depend only on the 
nuclear or mesonic configurations. The nuclear matrix elements 
are given by

</Æ|| Y^IIZ'Æ) = ]/~ (2 I' + 1) (2 I' ()K\2 I' IK) (11)
J 4 71

from which it is clear that | I — /' | <2.
The meson matrix elements depend implicitly upon other 

quantum numbers, in particular n and I. The element
II y^2) ||/> vanishes for j = j' ~ 1/2, and since Y® is of even 

parity, it can only connect mesonic states of the same parity. 
States with different values of n are too far away in energy to 
mix. Thus the 1S! and 2 states are unaffected by the inter-

2 2 J

action, and 2 p states can mix only among themselves. With 
increasing n, the effect of the interaction rapidly decreases and 
is already rather small for n = 3 (cf. footnote on p. 14). The 
non-vanishing angular matrix elements for the p-states are 
given by

<3/2 II y<2)||l/2> = - <1/2 II iy’||3/2> 

= - <3/2 II V¿2)||3/2> =

The radial double-bar matrix elements

<7 II /(O II /> = ^2pj (0 /’O’) ^2pj' (0 (lr (13) 

Jo

(12)

must be evaluated from a knowledge of radial wave functions. 
Wiieeler (1953) approximates the integral from hvdrogenic 
Schroedinger wave functions for the 2 p states, -)i2p = c2r2 exP 
(—Zpe2r/2 h2), normalized so that = 1, and using (5)
for /(r). He then finds

/(r) (P- = 5 (Z/237)3 fq Mev/barn, (14)

where the form factor f (1 +0.1/T2)-2 and the dimensionless 
parameter x = RZpe2)^2. Although the hvdrogenic Schroedinger

* Cf., for example, Biedenharn (1952); Biedenharn, Blatt, and Rose 
(1952), or Simon, van der Sluis, and Biedenharn (1954). 
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wave functions may be considered poor approximations for a 
2 p meson and a Pb nucleus (the second Bohr orbit is 12.3 X 
10~13cm compared with R ~ 7.7 X 10 13 cm for Pb), the wave 
functions published by Fitch and Rainwater for Pb do yield 
a form factor only 6 per cent smaller than that predicted by 
Wiieeler.

Because F is a good quantum number, the energy matrix is 
reducible to submatrices in which F is a constant. When these 
submatrices arc diagonalized, the new eigenfunctions are linear 
combinations of the functions given in (8); we may write them 
in the form

I«, K; FM) = /A, j; FM)(JK, j \ F\a, K; F), (15)

where a designates the other quantum numbers necessary to 
specify the particular state.

As will be shown in Section V, the only states which are 
populated with appreciable intensity are those which contain a 
component having the nucleus in its ground states. The number 
of these states is given in Table 1.

Table 1.
Even-Even Nuclei Odd Nuclei
F No. of levels F No. of levels

1/2 2 4 3/2 1 (Zo > 3/2)
3/2 3 - 1/2 3

4 + 1 /2 5
A) + 3/2 6

This is to be constrasted with the case of no non-diagonal inter
actions, where only a single state for each of the listed ¿'-values 
is populated.

The number of states for each value of F indicates the order 
of the matrix which must be diagonalized. The procedure for 
diagonalization is straightforward, but in the case of matrices of 
order 5 and 6 numerical approximation methods must be used.

The rotational spectra of the simple type (1) represent a 
limiting case realized for very deformed nuclei. For less deformed 
nuclei, the excitation spectrum is less regular but, provided the 
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essential non-diagonal coupling results from the interaction with 
one or a few low-lying states, its effect can be analyzed in a some
what similar manner as above. The result will depend on certain 
matrix elements which represent partly the average quadrupole 
coupling of the meson with the nucleus in its ground state and 
excited states, and partly the quadrupole transition elements 
which are similar to those which determine the electric quadru
pole radiative transitions between the states in question. In 
general, however, one can expect no simple relationship between 
the various matrix elements such as characterizes the rotational 
spectrum.

IV. Strong Coupling Approximation.

For sufficiently strong meson-nuclear quadrupole interaction, 
it is possible to obtain a simple solution to the coupled equations. 
Such a strong coupling treatment has been developed by Boiir 
and Mottelson (1953) for coupling nucleons to a deformed 
nucleus, and the methods are applicable also to a meson in the 
nuclear quadrupole field.

In the strong coupling treatment, one considers the meson 
as moving relatively to the deformed nucleus, and the appro
priate basis vectors arc thus given by

2F +1
16 jt2

^MK + Q^

(16)

in which the mesonic wave functions are described in terms of 
coordinates relative to the nuclear symmetry axis. The quantum 
number represents the component of j along this symmetry 
axis. The sign of the symmetrization is that appropriate to a 
meson coupled to an even-even nucleus. For odd-A or odd-odd 
nuclei, the symmetrization is of no significance in the present 
context.

The matrix elements of the quadrupole interaction H' (4) 
become very simple in this representation since H' is equivalent 
to the interaction of a meson in a fixed quadrupole field (or to 
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a meson in the field of a nucleus with I = x ). The elements 
are given by

</<.;/•■!//'I: r. . 4 C>o<-a<./1|/'(>■>||y'>
l/r- (17) 

X - 5 (— O' - ¡r-,, |.Z/' 20) / II Y¡,2>

and are seen to be diagonal in ß^.
The rotational energy of the system possesses non-diagonal 

as well as diagonal matrix elements in ß„. The diagonal terms 
are given by (cf. Bonn and Mottelson, 1953, Eq. II. 24)

<W/,o2.)(, = ^{F(/-'+l)+;(y+l)-/„(/0+l)-2Pí,(A’+í2p I ([8)

- (- 1 )F_/ O' + 1 /2) (F + 1 /2) do , I ÓK. o} ■

The last term in (18), which is to be included only for a meson 
coupled to an even-even nucleus, arises from symmetrization of 
the wave function (16), which introduces additional diagonal 
terms.

The matrix elements of the rotational energy which are non
diagonal in ß„ tend to decouple the meson from the nuclear 
axis, and the strong coupling approximation is the neglect of 
these terms. This approximation is valid when the rotational 
energies are small compared with the quadrupole energies (17).

The strong coupling Hamiltonian, Ho + (HBOT)0|- H', is thus 
diagonal in ß„ as well as in F, K and M, and the eigenfunctions 
are linear combinations (with respect to /) of functions of the 
type (16),

I«, K, a/t-, FSl>, = F|«,K,£î ;F>,. (19)
/

If we consider the 2 p states, the sum in (19) for ß^ = ± 3/2 
contains just one state with j — 3/2, while for ß^ = ±1/2 it con
tains two states with j = 1/2 and 3/2. Thus, the diagonalization 
procedure involves at most matrices of order two. It is con
venient (e.g. when discussing line intensities) also to express the 
strong coupling wave functions (19) in the form of the uncoupled 
representation (15). This transformation is given by
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Figure 1.
A comparison is made between the energies given by the strong coupling 

approximation and the “exact” treatment for an even-even nucleus. It is assumed 
that the meson is in a 2p state, and that the fine structure splitting is large (/ is 
a good quantum number), in which case, for the F = 1/2 levels and the F = 3/2, 
j — 1/2 level, the strong coupling approximation reduces to the exact treatment. 
The solid curves give the “exact” energies and the dashed curve the strong coupling 
limit for the levels F = 3/2, / = 3/2. Eo is the energy in the absence of quadru
pole coupling and ER0T is the excitation energy of the first rotational state (/ = 2). 
The quadrupole coupling is expressed in terms of

« = — To Qoe2</ II / (''I || /'>-
In the region of weak coupling, (ß!ER0T(^ 1), the nuclear spin I is approximately 
a good quantum number, while in the region of strong coupling (e/Erot )) 1), the 
component of the meson angular momentum along the nuclear symmetry axis, 

, is approximately a good quantum number.

a,K, Q/p,FM)s = I IK, j ; FM> (K,j F\a, K, Q/l;F')s 
ij

X (IJKß,, I Ij FK + ]/ X
1 for odd-A or odd-odd nuclei (20) 
0 for I odd ] even-even
|/2 for I even J nuclei.

A measure of the error in the energy eigenvalues of the 2 p 
levels is given by
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1 (EnorY 
Sr()0e2<l/2 H f(r) Il 3/2 > ’ (‘21)

where EROT is the energy of the first rotational state ; the numer
ical coefficient refers to even-even nuclei. Fig. 1 compares the 
strong coupling and exact energies for F — j = 3/9 levels in an 
even-even nucleus; the line structure splittings are assumed to 
be very large so that j is a good quantum number and thus the 
three other levels are given exactly in strong coupling.

Although the error in the energy is quadratic in EROT (cf. Eq. 
(21)), the error in the wave function is linear in ER0T. Thus, 
the strong coupling approximation should be used with reser
vation when wave functions are required (e.g. for line intensities). 
The exact treatment is always available and oilers no fundamental 
difficulties.

V. Line Intensities.

Fhe question of the X-ray line intensities for the 2 p—1 s me
sonic transitions involves an investigation of two points: (1) the 
relative (rate of) population of the 2 p levels, and (2) the relative 
transition probabilities from the 2 p states to the 1 s ground states.

The radiative transitions of interest are of the atomic electric 
dipole type. The nuclear transitions, which are 3/1 or E2, are 
several orders of magnitude slower. If I were a good quantum 
number, we would therefore have the restriction A I — 0. When 
/ is not a good quantum number, the electric dipole matrix element 
vanishes between those components of the wave function for 
which /( If.

The 2 p states are populated from higher states which interact 
only weakly with the nuclear quadrupole held and are, there
fore, very nearly pure / = /0*.  The populations of the 2 p states 
(i. e. summed over J/) can be shown to be proportional to

(2 F + 1)2?<70X,j; F4/|«,/<;FJ/>2, (22)
/

where the < //\,/; FAf | «, /<; FA/) are defined by (15).

* Of these, the 3d states are most responsible for feeding the 2p states, and 
also interact the most with the nucleus. Mixing of excited nuclear states becomes 
appreciable for n = 3 only for the nuclei with large deformations beyond Pb, 
and then may affect the intensities by around 20 per cent. The effect of mixing 
in the 3d states may be included in a straightforward manner.
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In the mesonic ground state, lsi/,, there is no interaction 
with the nuclear quadrupole field, and F, I and / = 1/2 are all 
good quantum numbers; the energy depends only upon I. The 
relative transition probabilities from the 2 p level | «, K; F) to 
the ground level with spin I are proportional to

X (IK, j-FM I a, K; FAO2. (23)
i

From (22) and (23), the line intensities can be computed. An 
atom which finds itself in the ground state, but with I > /0, 
will emit a nuclear y-ray. For nuclei with large deformations, 
the probability for this may be of the order of 1/2.

What might be called the “center of population’’ of the 2 p states 
is left unchanged by the inclusion of the quadrupole interaction. 
However, the possibility of making transitions to the atomic 
ground states with an excited nucleus tends to shift the center 
of gravity of the spectral lines to smaller energies, and this shift 
is just given by weighting the nuclear rotational energies with 
number of transitions to these final states. Such shifts will be 
less than about 1 per cent of the transition energies.

VI. Numerical Examples.

It is to be noted that the quadrupole moment enters only in 
the combination ()o <J ||/(/') ||./>- working out numerical 
examples, we shall select values for this combination which are 
consistent with other estimates of nuclear quadrupole moments 
and with the assumptions that the double-far matrix element 
may be approximated by (14). The fine structure splittings are 
roughly interpolated from the numerical values of Fitch and 
Rainwater. The other parameters which enter are indicated in 
the particular cases.

A. Even-Even Nuclei. The ground state of an even-even nucleus 
has 1 = 0 and the first rotational level is I = 2, K = 0. No 
higher levels enter for the 2 p states, and the Hamiltonian is 
reducible to the submatrices given below.
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Figures 2.
Energy levels and spectra are given for even-even isotopes. All energies are 

given in MeV. In each of the three examples are three diagrams which give, begin
ning at the top,

(I) 2p energy level scheme in the absence of non-diagonal interactions. The 
triplet of numbers above each line designates (IjF), all of which are good quantum 
numbers when the non-diagonal interactions are neglected. The solid lines represent 
the levels where the nucleus is in the ground state and give the usual fine structure 
doublet; these are the only levels which arc populated when no “mixing” is present. 
The dashed lines represent atomic levels in which the first nuclear rotational level 
(/ = 2) is excited, and includes diagonal (static) quadrupole interactions. The 
height of the lines is proportional to the statistical weight (2 F + 1). The zero 
of energy is taken at the “center of gravity” of the fine structure doublet (/ = 0).

(II) 2 p energy level scheme including non-diagonal as well as diagonal quadru
pole interactions. The height of each line is proportional to its population. The 
only good quantum number which remains after “mixing” is F, which is denoted 
under each line.

(III) The line, spectrum. Each of the 2p states may make transitions to 
the atomic ground states, ls.;9 with Z = 0 or 2. This leads to the ten spectral lines 
represented by the solid lines. The height of the lines is proportional to the intensity. 
The dashed lines represent the spectrum which would be observed in the absence 
of non-diagonal interactions; the zero point of energy is taken at the center of 
gravity of this doublet. The arrow points to the center of gravity of the actual 
spectrum.

The values of the parameters represent estimates which contain considerable 
uncertainty, but are expected to exhibit the salient features of the spectra. 
The line structure energies (Ejs) are rough extrapolations of the values given by 
Fitch and Rainwater. The rotational energies (FnoT) are either experimental 
values or consistent with the energies of neighbouring isotopes. The quadrupole 
interaction energy

£ = ” Th H f (r) H '"> - i Öo (Z/237)3 fq MeV

is based upon Qo consistent with spectroscopic data (from neighbouring odd iso
topes), nuclear rotational energies, and Coulomb excitation. The form factor f 
is given by Wheeler’s approximation. The actual parameters are given below 
each example.
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Fig. 2a, 72H/178:
Efg = 0.119 MeV, 

Erot = 0.089 MeV, 
e = 0.0579 MeV (Qo 9 barns, / «a 0.457).

3

Probability that the nucleus be left in the state I = 2 is 0.47.

and

where
= Hoo - i E/s

//22 = ^00 + i -ß'/s + ERoT + e

i«,, r'2£y- • 1 00, 1/2, 1/2»
\|/2 « H22 J ■ ■ • 20, 3/2, 1/2»

h — £ £ • • • 1 00, 3/2; 3/2 »

£ H22 £ - - - 1 20, 1/2 ; 3/2»

£ e H33 / • • • 1 20, 3/2; 3/2 »

Hu = #00 + Î ^fs

^22 = Hoo-- Î Efs+ Er0T
''.33 = Hoo-\- 3 Efs + Erot 

Dan. Mat. Fys. Medd. 29, no.3. 2
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i 
i 
i
i

Fig. 2 b, wTh™>, Qo > 0:

U 1 .111 1
-3 -> 0 1 n ■ i

/ 2 j Mev.

E. = 0.242 MeV, 
erot = °-050 MeV’ 

e = 0.0986 MeV (Qo % 12.6 barns, f 0.286).

Probability that the nucleus be left in the state I = 2 is 0.52.

and Hoo = “center of gravity” of the unperturbed 2 p doublet

Efs = tine structure splitting 2 p3/2 — 2 p1;2
EBOT — energy of first rotational nuclear level 

e = II /('■) ||./"> ~ -lQo(Z/237)s/«MeV.

In Figs. 2, the level structure and line intensities are 
given for even-even isotopes Hf and Th. The parameters assumed 
are described in the captions. The spectra are quite different from 
those which are anticipated without inclusion of the non-diagonal 
interaction, even if the individual lines are not resolvable. Of 
particular interest is the way in which the spectra clearly dist
inguish the sign of the intrinsic quadrupole moment. In the Th 
example, the negative sign leads to three well-separated groups 
of lines, the positive sign to two.
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i
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i

i i
i i
i i

I I. . I. 1. ■.________  . ,1 ! , , _____ LX-
-J -.1 0 I / 2 J Mev.

Fig. 2c, 90Th230, Qo < 0:
All parameters are the same as for (2 b), except that Qo and hence e are negative.

Probability that the nucleus be left in the state I = 2 is 0.42.

B. Odd Nuclei. As is indicated in Table 1, the odd nuclei 
will, in general, lead to 15 levels and require, for calculation, 
the diagonalization of matrices of order up to six. Although this 
is straightforward, we choose, for the numerical example, to 
use the strong coupling approximation and select a nucleus for 
which it is likely to be valid, Í/235 (7 — 5/2).

Since Ho-\- (HnOT)0-\- H' is reducible in the states with 
= ±1/2 are obtained by diagonalizing the 2x2 matrices

/Hu |/M . . . ¡5/2, 1/2 ± 1/2; F,W>,

\|/2e H22 / . .. 15/2, 3/2 ± 1/2;
where

«n = B,s + ±iF(F+l)-17/2=F5/2}
A 

= H0„ + i£z„ + « + ^{F(F+l)-ll/2T5/2}
Z A

and £ is defined as in expressions (24) and (25).
2*
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3M

Energy levels and spectrum for the odd isotope 92U233.
The diagrams are essentially the same as those in Fig. 2 (the triplet of quantum 

numbers (IjF) is replaced by simply F in the first diagram for reasons of simplicity. 
The dashed lines in the first diagram represent those states with excited nuclei 
which can mix with the states which have / = Io. 'the energies in the first diagram 
include the diagonal (static) quadrupole interactions, but not the non-diagonal 
interaction, which are included in the second diagram. The scale for the length 
of the lines in the spectrum is expanded to twice the scale used in the energy level 
diagrams. The energies were calculated in the strong coupling approximation, 
using the same parameters as for 90Th230, except for the ground state nuclear spin:

£ = 0.242 Mev,
erot = ^[/(Z + l) —/o(/o+l)lMev\ 4 = 5/2, 

£ = 0.0986 Mev (Qo 2.6 barns, f 0.286).

Probability that the nucleus be left in the state I = 7/2 is 0.45, 1 = 9/2 
is 0.06, and I = 11/2 is 0.02.
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Hoo

The states with = i 3/2 are given simply by

In Fig. 3, the level structure and line intensities are given 
for Í7235; the parameters are described in the caption. Perhaps 
the most striking feature of the spectrum is its complexity. It is 
to be noted, however, that there appear to be two major com
ponents of the spectrum and that the separation of these com
ponents is a measure of the interaction.

VI. Conclusions.

For nuclei with large deformations, such as are encountered 
for 155 < A < 185 and A > 225, the interaction of a /z-meson 
with the rotational states of a nucleus produces splittings of the 
2 p atomic levels which are comparable in size with the mesonic 
fine structure splittings. The effect increases the number of lines 
observed and influences the general pattern of the spectrum 
even when individual lines are not resolvable. There is a large 
probability that the nucleus be left in an excited rotational level 
after the meson reaches the atomic ground state, with the sub
sequent emission of a nuclear y-ray.

Experimental studies of these effects yield directly (for nuclei 
with large deformations) the quantity Qo (Jr || f(r) || /> which is 
a weighted integral of the quadrupole charge density of the 
nucleus. This gives information about the magnitude and sign 
of intrinsic nuclear quadrupole moments and nuclear charge 
distributions. In particular, it provides a method of determining 
the sign of the intrinsic quadrupole moments of even-even nuclei, 
a quantity not available previously from other experiments.
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ost of the theoretical work concerning the constitution and
1V1 the magnetic behaviour of the complexes of the transition 
elements has been done on the basis of Pauling’s theory, devel
oped in his famous paper and book.1 While this theory naturally 
accounts for the stereochemistry of these as well as for many 
other chemical compounds, it does not tell anything directly 
about the very characteristic absorption spectra of complex ions 
in solution. These features, being connected with the low excited 
electronic states of the cation, may be described by a pertur
bation treatment, in which it is investigated how the different 
states of the ion will split up under the influence of the outer 
field created by the surrounding radicals, the so-called ligands.

1 Pauling, L. : J.A.C.S. 53, (1931) 1367; “The Nature of the Chemical Bond”, 
Cornell University Press 1940.

2 Bethe, I I.: Ann. Physik 5 Folge, 3 (1929) 133.
3 Van Vleck, J. H. : The Theory of Electric and Magnetic Susceptibilities. 

Oxford 1932.
4 Hartmann, H., and Ilse, F. E. : Z. physik. Chem. 197 (1951) 239.
5 Hartmann, H., and Ilse, F. E.: Z. Naturforschg. 6a, (1951) 751.
8 Bjerrum, J. Ballhausen, C. J., and Klixbüll Jorgensen, C.: Acta 

Chem. Scand. 8 (1954). 1275.

Already in 1929, Betiie2 had evaluated the splittings of 
different orbits due to the influences of various outer fields, and 
Van Vleck and his school3 had used this view to account for 
different properties of crystals. The idea of using this crystal
field theory on complex ions in aqueous solution is due to Hart
mann and Ilse,4 who applied it to explain the absorption spectrum 
of the titanium (III) ion. Later they extended the theory to the 
spectrum of the vanadium (HI) ion,5 and in a recent paper6 
Bjerrum, Klixbüll Jürgensen, and the present author on the 
same basis discussed the simpler copper (II) complexes, partic
ularly their spectra and constitution.

1*
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In the present paper, the detailed calculations underlying the 
results quoted in ref. 6 are given. It is possible in a very simple 
way to obtain the formulae determining the absorption spectra 
of those first transition group elements whose cations have one 
“effective” d-electron. In general the five-fold degenerate ground 
electronic level will split up, the splittings determining e. g. the 
magnetic susceptibility of the complex7 as well as the spectrum, 
which results from transitions between the different levels.

7 Penney, W. G., and Schlapp, R.: Phys. Rev. 42 (1932) 666.
8 Bjerrum, J.: Dan. Mat. Fys. Medd. 11 (1932) no. 10. ibid. 12 (1934) no. 15.
9 Corson, E. M. : Perturbation Methods in Quantum Mechanics. (Blackie & 

Son 1951.)

The titanium (III) ion was treated in this way.4 The electronic 
configuration of Ti ' * is 1 s22s22p®3s23p63d1, the ion in solution 
being surrounded by six water molecules arranged octahedrally. 
The cubic field resulting from the six water dipoles will split 
the level of the 3d electron into two, thus producing one band. 
The spectra and complexes of the titanium (III) ion are not 
well-known, however, but all the spectra of the complexes 
[Cu(NH3)n(H2O)jv_n]4 ' have been reported.8 (N is the coordina
tion number, and n takes the integral values 0 to N). As the 
electronic configuration of the cupric ion is ls22s22p83s23p63d9 
we can use the so-called hole formalism,9 a description of missing 
electrons stating that for most purposes the holes in a shell 
behave as positive electrons. This is equivalent to the well-known 
rule that the number and type of terms are the same, e. g. for the 
atomic configurations d" and d10—n. We shall therefore treat the 
copper (II) ion as having one 3d positron besides the closed zinc
(II) ion configuration.

We consider a cupric ion surrounded by N ligands, and as 
the models of the complexes the following configurations are used: 
the square-planar, the tetrahedral, the square-pyramidal and the 
octahedral configuration (Fig. 1). The choice of these particular 
models follows from considerations given in ref. 6. We shall 
first treat the octahedral configuration, as the square planar and 
square pyramidal configurations are included in this calculation.

We neglect the spin-orbit interaction since it is weak as com
pared with the ligand field, and as the unperturbed eigenfunctions 
for the 3d positron we take the hydrogen-like wave functions:



Nr. 4 a

w. = 7? y2° (ø, <p) 
= 7? y2‘ (O, ep) 

y>-i = R ^2_1 (0. ç9)

y)2 = r y2 (o, (p) 
ip_2 = 7? y2~2 (O, (p)

(O

Hore Yj," (O, <p) arc the surface spherical harmonics normalized 
_ _ pim m _

to unity, defined by = 7J"’ (cos 0) -----, 7J"' (cos 0) are the
1/2 71

associated Legendre polynomials normalized to unity, 7? is the 
. / (S I Z X11 2 —function /? = 1/—----re.3a„ aiso normalized to unitv,
]' 45 \3 n0/

(t0 is the Bohr radius, and Z is the effective charge on the nu
cleus. We are especially interested in the first-order perturbations 
resulting from dipoles, but this result is most easily obtained 
after the calculation of the perturbations resulting from charges 

7 placed on the sites of the dipoles has been performed.
'flic Hamiltonian operator becomes:

H = ^2 + ^_e>(Sl + Sí + S> + Sí + Sí + S>\
2 m r \ri r2 r3 r4 r5 r6 )

or in terms of atomic units (used in this paper) we have for the 
perturbation term :

j/(D = _(îi + î? + î-3 + î< + ^ + Î6\
\^1 1’2 r3 r4 r5 r6 /

This quantity can be expanded in terms of the surface spherical 
harmonic as

"721
72

72

y

/ 2n + l

(2)

(A proof of this is given in ref. 10.) The first term in (2) is due 
to the charges in the plane, the second to the two charges placed

10 Eyring, H., Walter, J., and Kimball, G. E. : Quantum Chemistry. (John 
Wiley & Sons 1944.)
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Fig. 1. Model of various types of configurations. The positions labelled 1—4 
represent the square, 1—5 the square pyramid, and 1—6 the octahedron (or 
tetragonal bipyramid). Distances r1 — r6 from the ligands to the electron. Dipoles 

and charges — qt.

on the Z-axis. First we shall treat the perturbations due to the 
first term and obtain e. g. for r/j 4= q2 and q2 = q3 = i/4

H(1) =
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Remembering that Y™ (0, <p) = eim(?Y™(<p, o) and (y™)*  = 
(— l)m Y~m we have:

-[<Zi+ </(»-)"I

or
£f(1) = __ [(¡1 + g (m) q2] ÿ== ¿ ¿ 2n + l 7"+*  (0) ’

where 9Ím) = 3 for m = 0 and ± 4
g (in) = — 1 for m = ± 1, ±2, ± 3.

In the general case we have for the first term in (2):

Hw = — D(m,q)
4 ti r^.

2/1+1 r”+1 (3)

in which expression D(m) — q^fÇm) + q2-g(jn).
The different terms = \ ipNH^ }y’\' dr, must now be 

evaluated in order to get the secular equation.
We get

H^t = J Ä2 y2m' ( Y^'y- H(V> dr

= $K2 [AŸ’4n + BÊ2m + Cÿom] Hmdr, 

where m = in' — m", 

(4)

and A, B and C are constants, related to the Wigner coefficients. 
(See Condon and Shortley11 for the nomenclature and formulae 
of the Wigner coefficients.) The values of A, B and C are

A = Çÿ2m'(y4m)*(ÿ 2m")*rfï?  = (—l)m"l/-f-(22/n'-rn"|224/n)
| 14 71

B = ^'(Ÿ^yÇŸfydQ = (- l)m"( (22/11'-/«" I 222 /n)

c = J y2m ( yom)*  ( y2m y dß = (— i )m 1/ 4~ (22 /«' - m" | 2200).

11 Condon, E. U., and Shortley, G. H. : The Theory of Atomic Spectra, 
[). 73. (Cambridge 1953).
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Further we have:

S>TO^')*d¿>  = ônH,ônun,

I 0 for n
I 1 for n

4= n
= n

^mm'
0 for m 4= m'

1 for m = in'

(5)

Now, from this it is seen that in

- n<m’ ?> ¡7== i «2 u r” + Bp”' + c p»"> ¿ ¿ äTTi
y 2 n.) o — n ¿ n ' 1 r>

ŸnPnWdT

n can only be 4, 2 and 0 if H^N’ 4^ 0.
As P"1 = 0 for I m | = n — 1, n — 3, n — 5 it also 

follows that I zn I = 0, 2, 4.
The following table gives the values of D(m) for different m:

Table 1.

Configuration 1 m 1 Z) (ni, q)

/ /■
0 and 4 4<7i

2 0

./ /
0 and 4 3 <7i + ?2

2 — ?1 + <72

./ /' 0 and 4 2 ?! + 2 <72

2 0

,/ /■ 0 and 4 2 Qi + 2 q2

2 — 2q1 + 2q2

The secular equation is then:

= o (6)
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From the definition ol’ (F"l):i: = (— l)m Ymm it is seen that when 
the indices are even

— H—N—N’ an(i — M — ^—NM ~ H—MN-

Using these relations, and by applying row and column additions 
and subtractions, it is possible to reduce the determinant to a 
diagonal form with the solutions

(£(1))2-(//¿¿a + H(ÿ + H(i)) £d) + = 0 .

(7)

If we now look at the second term of (2), it is seen that for 
tliis term m — 0. This means that after (5) only the diagonal 
terms in (6) are affected, and we have in general

(ay™ + by? + cr„»)

H" (//6 + ?•) X

0

r71
<

71+1
>

I / 4jr _ yO
|/2n+l dr.

The evaluation of H^>, is now simple, the results being for 
ion — ion complexes: (the values of the G’s are determined in
dividually by corresponding sets of and q)

- ¿ f (75 + 7e)

1
14= -77(0,

+ Go + - U2 —öl ^4

o

45 "J" 9<5^

Go + y G2 4- - G4

(8)
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3

where

8
45

(»/{ rIl nx R"
G„ = f’r‘e~2lr ~^dr + \ dr

•'() ti •'/{ 1

— a 3 c42 G< 14 Ga^(121 = -P(2,9)¿/’

(8)

and f’ using the nomenclature of Hartmann and Use.

Evaluating these integrals, we get

+ 45 ,r2 4--G\r3+ |x4j e 2x

when x = fli.
A few values of G2 and G4 are tabulated in Table 2.

Values of radial functions.

X = Z . R = fR (R Jn a u )

Table 2.

X = in g2 g4

7 0.2241 0.09533
8 0.1527 0.05200
9 0.1080 0.02960

10 0.0788 0.01772
11 0.0592 0.01100
12 0.0456 0.00712

For numerical calculations on copper (II) complexes Z is taken as 7.85 (cf. 
Slater, Phys. Rev., 3G, (1930) 57.)
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With the help of Table 1, (7) and (8) we can now estimate 
the maxima of the absorption spectra of a cation — anion complex.

The ions CuClJ'- and CuBr^"— are of this type, even if 
according to the discussion in ref. 6, one might predict the com
position to be [CuC14(H2O)2] in aqueous solution. It is not 
easy, however, to estimate the values of the parameters in the 
formula for the absorption of this complex, since the perturbation 
is due both to the charge of the halide ion and the induced dipole 
moment of the latter, caused by the influence of the cupric ion.

Both the chloro- and bromo-complexes have an absorption 
in the infrared. Now the distance Cu 1 + — Br— must be greater 
than the distance Cu+ ' — Cl““, which means that the perturbation 
is smaller in the bromo-complex, and the absorption maximum 
is thus displaced towards the red in accordance with observation 
of the infrared band. (From 2 = 960 m/z in 13 M. HC1 to 
2 = 1100 m/z in 9 M. HBr.)

12 Bjerrum, J.: Dan. Mat. Fys. Medd. 22 (1946) no. 18.
13 Fajans, K.: Naturwiss. 11 (1923) 165.

However, CuClJ also has a very strong absorption in the 
ultraviolet passing into the violet, and the solution is therefore 
yellow.12 CuBi-4 has an absorption in the blue, passing into the 
infrared band; the solution is therefore red.

Thus the situation is more complicated than the simple de
scription indicated before. There must be electron exchange 
between the anion and the cation of these complexes as the non
existence of copper (II) iodide seems to suggest.12 13 The strong 
absorption in the ultraviolet and visible regions may therefore 
be electron transfer spectra due to this exchange.

The spectra of the dipole — cation complexes are more inter
esting from the standpoint of this theory, since they have no 
absorption in the near ultraviolet. The absorption maxima for 
such complexes can be found in the following way:

We place a charge — q at a distance It and a charge + q at 
a distance It Alt from the cupric ion. As AX = fAR

8 dG 8
= q) 4sfAxE Ks ~dx = » (m, P) ^5 f2EKsBs>
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(9)

r2
X

70875
Ri

li2

2.r

e~2X

— 2x e

8
45

determined by corresponding sets of R and 
nsed are:

45
+ f-

1
14

i/i and q2 in the formula for D(nï) are altered to /z1 and /¿2> the 
values of the B’s are 
jli, and the functions

/A.

8
+ 45

8
+ 45

= D(2,/i)^P

W<!> = "»-A«2-!1!"4

1 ±B
1 '* 21 4

23625 , 23625
2 .i"1 I .r“8.r6 +

where /z is the point dipole equal to eq AR. Then

= l>(2,/>)^~P
45

= "(■‘x“)^/'2^04

+ P (fa + Mr) Ho + ?

f2 (Rs + Ro) Rq — j ^2 4“ 21

/■2[«0-~«2 + ¿»4

45
8 x2
945 

_4.r4 +

dGn
—- = B 
dx

45 45 „ ,15
« 2 a a i- 7T + 1 x ~r8 x 4 X 4 4

’945 945 945 315 ¿
ÍP + W+2p+~+'

I 15 3 I 5 4
+ T^ + 2x

70875 70875 70875
8 X6 4 X5 4 X4

, 4725 , 1575 , , 225 2 , 27 _ 9 4
+ ^'+_2~+22ox+'r‘r +T^+2,T

8
45

—^B4—-^=B2
28J/6 7 |/6

5
24
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The functions are tabulated in Table 3. A graphical represen
tation is given in Fig. 2.

Vallies of derived radial functions.
Table 3.

X = III -Bo - b2 -b4

3.0 0.2213 0.1054 0.0500
3.5 0.2527 0.2118 0.1619
4.0 0.2414 0.2489 0.2050
4.5 0.2203 0.2420 0.2012
5.0 0.1957 0.2136 0.1740
6 0 0.1491 0.1437 0.1067
7.0 0.1132 0.08980 0.05779
8.0 0.08754 0.05585 0.03022
9.0 0.06937 0.03563 0.01596

10.0 0.05625 0.02356 0.008859
11.0 0.04649 0.01614 0.005001
12.0 0.03906 0.01139 0.002967
13.0 0.03328 0.008272 0.001836
14.0 0.02868 0.006152 0.001177

With the aid of Table 1, (7), and (9), we are able to calculate 
the maximum of absorption for various types of ammine
cupric ions.

First, the square planar configuration, equal distances It and 
equal dipole moments: (The /’notation is the notation of Bethe2)

3(H)) —

= I1 ^4^

= nF*.

E(.r:tU.^ =

4 — y B, + y B4

4 19
4 7?(l + y /^2 + 2Î

4 16
4^0 + 7^2-27^4

1-fold degenerate.

1- fold degenerate.

1 -fold degenerate.

2- fold degenerate.

(10)

Next, the square pyramidal (« = 1) and the distorted octahedron 
(« = 2). Il and // the same in the plane, and perpendicular to 
the plane one or two dipoles /¿z at a distance /?,: (also here cor
responding //. and II are to be taken together):
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8 r 4 „ 3 „o 8 2 2 I
45 4B0-yB2 + yB4 B0 + yB2 + yB4

8 4 19 „ 8 r 2 i
45 4 Bo + yB2 + — ^4 + ^45“

8 , 4 16 8 r 2 i
45 4B0 + 7B2-2yB4 + Bzf #o—y ^2 + 2Ï 5

8 r „ 2 „ 2i 8 1 4
45 4B0-yB2--B4 + Bzf 45«

The configuration of Cu(H2())6' + is shown in ref. 6 to be a 
distorted octahedron. For this complex l't3 < rtl < rt4 < F/5.

If [à, = [xz and 1{ — Rz (the regular octahedron) we obtain:14

Q
E(r3) = — [6 Bo + B4] 2-fold degenerate.

£(A) = G Bo —-^43
3-fold degenerate.

E(r5)>E(r3)

(12)

It is seen that the distorted octahedral configuration will give 
three bands, the frequency of the maxima of the bands given

by: hvn = Tt3
rt5
Ftl if we look at Cu (H2())6 ! ' . For the first

two bands in this complex we shall have:

>'i = £(F<5)-E(r<3)
v2 E(J i4) — 7i(Fi 3)

In this relation we have a connection between the absorption 
maxima and the values of the dipoles at the different sites. This

14 This result is identical with that of Hartmann and Ilse.4 However, we 
disagree with their formula for Go and that for E(B2g) on p. 242. For the coefficient 

128to II (4) we obtain — .
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formula and the experimentally estimated ratio )'i/r2 = 1-33 is 
used in ref. 6 to show that the configuration of Cu(H2O)6+ + 
can only be sligthly distorted. If the configuration is distorted 
much, it would be necessary to have fi- > /z in order to get the 
right absorption maximum, but it is known from chemical con
siderations that this is not the case. It is shown in ref. 6 that a 
good agreement between the experimentally known facts and the 
theory is obtained by using N = 6 for Cu (H2())y in a slightly 
distorted octahedral configuration, where B = 1.95 A and 
/?. = 2.00 A.

The formulae for the absorption of the mixed complexes are 
not written out because of their great length, but they are easily 
obtained with the help of Table 1,(7) and (9). Numerical cal
culations of the maxima of the first band for the various cupric 
ammine complexes arc tabulated in ref. 6. The agreements 
between the known and calculated absorption maxima are 
remarkable.

If we treat the tetrahedral configuration with N = 4 and 
equal dipoles ii we similarly obtain:

£(A) = 2-fold degenerate.

4 7ÍO + — Bn 3-fold degenerate.

E(r3)>E(A).

(13)

These results agree with those of Betiie,2 who has proved 
that under the influence of a cubic field, such as that provided 
by the regular octahedral and tetrahedral configurations, the five 
fold (2Å + 1) degenerate 21) level will split up into two. The more 
unsymmetrical a field we put on the 21) level, the more splittings 
we get, until at last the degeneracy is completely removed. It 
follows from the above discussion that in the distorted octahedral 
complexes [Cu (NH3)zl (H2O)6_n] ' the number of bands will 
depend only on the ligands in the co-planar positions 1—4. 
Four identical ligands — B2 = Bä = /*<)  or cis-placing of two 
identical ligands (/Zi = /z2 4^ Bä — Bi) leads to 3 bands; the 
introduction of one different ligand (jix /j,2 = /z3 — ¿z4), or 
trans-placing (fix = /z3 =4 B2 — Bi) will give 4 bands.
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The ground level for nine d-electrons in the regular octahe
dron is 2-fold degenerate, but in the tetrahedral case this level 
is 3-fold degenerate. If we multiply the functions for the different 
levels by their degeneracy number and then add up the resulting 
terms, all the B's except Bo vanish. This means that the “centre 
of gravity” of the levels is not altered by applying a perturba
tion to the system (cf. ref. 2).

We may conclude from the calculations on dipole-cation com
plexes that electronic exchange between the ligands and the 
central ion cannot be very important for the absorption spectra 
of such complexes. Now it has been pointed out by Orgel15 
that the theories of Pauling and Van Vleck are closely connected. 
In this respect it may be noted that the ground energy of the 
planar configuration given by (10) is lower than that of the tetra
hedral configuration calculated in the same way (14) even when 
the electrostatic interaction of the ligands is taken into account.

16 Orgel, L. E. : J. Chem. Soc. 1952, 4756.
16 Herzberg, C : Spectra of Diatomic Molecules. (D. Van Nostrand 1950.)
17 Bjerrum, J.: Metal Ammine Formation in Aqueous Solution, p. 196. 

(Copenhagen 1941.)
Dan.Mat.Fys.Medd. 29, no.4.

A difficulty of the present theory is that dipole transitions 
between different levels are forbidden. The occurrence of “for
bidden” transitions in such complicated systems as those we are 
dealing with can, however, have many reasons.16 Furthermore, 
there seems to be experimental evidence for the assumption that 
the intensity of the spectra (a rough measure of which is given 
by £max'Vl/i’ where emax is the molar extinction coefficient of the 
maxima and vt/ the half-width of the band in cm-1) is connected 
with the symmetry of the perturbing field. The intensity of e. g. 
the [Ni(NH3)n (H2O)6_n] + + complexes, which can be seen from 
the spectra computed by Bjerrum,17 is greatest for n = 3.

The spectra of high intensity (emax ~ 2000) we shall call elec
tron transfer spectra, these being due to transfer of electrons from 
the ligands to the metal ion. The spectra due to the influence of 
ligands on the energy terms of the partially filled electron shells 
in the central atom we shall call transition group spectra, because 
they only occur in the transition groups of the periodic system. 
These latter spectra are mainly of two kinds, the first having a 
molar extinction coefficient e~ 10, the second having e ~ 0.1. 
The ultraviolet spectrum of G11CI4 is an electron transfer spectrum ; 

2
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the bands of the cupric annnines are transition group spectra of 
the first kind, while all the bands of Mn+ + are transition group 
spectra of the second kind. It is hoped that further investigations 
will throw more light on these questions.

I wish to express my sincere thanks to Professor J. Bjerrum 
for suggesting this problem, and for his great interest and constant 
encouragement during the work. My thanks are further due to 
Mr. Aage Winther for many helpful discussions.
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1. The following tables give the functions

and

= j[9(í'))'n+3í'2</f' (1)

= f3 [9(í)]m+3//m(í) (2)

where 0 is the Lane-Emden function of index n = 3/2. The 
functions have been calculated for all integral values of the 
parameter m from 1 to 23 inclusive.

2. The tables of Im($) will facilitate the calculation of the 
energy production in convective cores in stars. The structure of 
the convective core is described by:

Distance from center, r — «I;

Temperature, T = Tc0

Density, o = pc0312

where « is a scale factor, and Tc and qc the central temperature 
and density. The energy production inside a sphere of radius 
r, Lr, will be

Lr = ( 4 n i-2qe dr. (3)
Jo

If the energy production is expressed by the power law

£ = «,/r, (4)
we gel

Lr(=aS) = e0¿ +óTvcIm(¿) (5)

with m — V + 3 (d — l)/2 .
1*
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3. The function W is the homology invariant quantity cor
responding to I. The tables are primarily calculated as an aid 
to starting calculations of the interior structure of stars where 
homology invariant quantities are used as the primary variables. 
Such a choice will be convenient whenever the energy production 
and the opacity can be expressed with sufficient accuracy by 
power expressions, such as (4) above for £ and

X = (6)

for the opacity, and the radiation pressure can be neglected. 
In this case we can choose the variables

dlogP
d log r

r dlogMr
d log r

(J}

d log r

V _ dlogT
n I- 1 d log r

where we have used the usual notation: P is the pressure, Mr 
is the mass within the sphere of radius r, and n is the polytropic 
index.

In terms of these variables the usual four differential equations 
governing the internal structure of a star in radiative equilibrium 
reduce themselves to the following three differential equations

dU _ ¿7(3 — F+H-T)
dV V(U + H 1)

dW = W(3-(l+0) V-(r-l-ô)H-yV) 
dV V(i'+H-1)

dH H((9 + s-a)H—(2-a) V+W-l) 
dV~~ V(i/+H-1)

and the quadrature
logr/r0= jv(t/ + tf_1).
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i

Inside the convective core the functions U, V, and H are 
independent of the opacity and energy production. U and V arc
t. in British Association Tables, Vol. II. The variable H
follows immediately as 2 V/5. The remaining variable, IV, is 
the function tabulated in the present publication. Contrary to 
what is the case of V, U and H, IV depends on the energy pro
duction law. The present tables cover the ground where a law 
of the form (4), with 1 < v + 3 (<5— l)/2 < 23, is concerned.

The tables of IV have been only with the argu
ment £. The applications to integrations of stellar structure require
V to be the independent variable. Therefore an auxiliary table, 
which gives U and £ as functions of V, has been provided.

4. In a recent paper by Osterbrock and the present author1 
it has been shown how an upper limit to the extent of the con
vective core in a star where (4) and (6) are valid can be derived. 
This limit has the following form: A convective core, extending 
to the point in the star where V = Vo, is only possible if

or
I o — VI o — (1.2 +0.4 s 4-0.6 a) I o > 0

2V„ 3.

(10)

(H)

If £ is of the form (4), the quantity on the right hand side of (11) 
depends only on Vo and v + 3 (Ô— 1 )/2. It has been plotted in 
ligure 1.

11 is of considerable interest to know the behaviour of the 
convective core in a star where two energy sources, each with 
an output of the form (4), are active. There would be no diffi
culties in evaluating the IV functions for such mixtures and then 
plotting the corresponding curves in the diagram. Since, however, 
the most important feature of the curve is its intersection with 
the s -|- 3 a/2 axis, we shall coniine our attention to the evaluation 
of the position of this point. For this purpose, let us write the 
total energy production rate as

« = ec (y0'"- + (1 - 7) r*)  03®. (12)

1 Ap. .J., 117, 306, 1953.
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Figure 1. The curves give the upper limit to the extent of the convective core 
as a function of the opacity and energy production laws.

Thus £c is the total energy production rate at the center while y 
measures the relative contribution to this total from the reaction 
characterized by the subscript 1. Using the power expansions of 
the Lane-Emden function it is easy to find the value of the 
relevant function at V = 0:

W? — 3 = 0.6 y nq + 0.6 (1 — y) zzi2— 2.1. (13)
2 V ]v->o 

'Phus the abscissa of the required intersection on the horizontal 
axis is a mean of the values of m for the two reactions, the weighing 
factor being the contribution from the particular process to the 
total energy production at the center.
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The tables.

The tables giving £ and U as functions of V have been obtained 
by interpolation of the tables given in British Association 'fables, 
Vol. II. The second difference, A", or the modified second di- 
ference, M" = A"— 0.184 d1', has been given. Thus inter
polation to the fraction n follows from Everett’s formula:

/'(x, + nAx) = (1 — n) /'(x,) + nf (xl+t)

+ a",A" (X,.) + e'[A" (xi+1)

or the same expression with M" replacing A". The coefficients 
Eq and E'i h ave been tabulated with argument n in Interpolation 
and Allied Tables, H. M. Stationary Office (reprinted from the 
Nautical Almanac for 1937). For small values of V the table for 
£ becomes unmanageable. 'Phis difficulty is avoided if one works 
with the function p6V/5— £.

The tables of I and IV are based on the values of 0 given in 
British Association Tables, Vol. II. The calculations were carried 
out to seven decimals and only in the copy prepared for printing 
the functions were rounded to five and four decimals. For inter
polation to arbitrary values of £ the modified second differences 
have been given. Most of the work of calculating these functions 
was done by means of the IBM 602-A calculators at the IBM 
Watson Scientific Computing Laboratory, New York City.

The author is grateful to Dr. W. J. Eckert for placing the 
facilities of the Watson Computing Laboratory at his disposal. 
He also wishes to thank the International Astronomical Union 
and Ole Romer Fondet, Copenhagen, for grants while the work 
was carried out, and the United States Educational Foundation 
in Denmark for a Fulbright Travel Grant.

Indleveret til selskabet den 16. november 1953. 
lùerdlg fra trykkeriet den 17. december 1954.



8 Nr. 5

V ■ t s M" U A"

0.0 0.00000 3.00000 + 30
0.1 0.34606 ,— 2.96 11 1 30
0.2 0.48888 — 2.92858 30
0.3 0.59811 —1567 2.89332 29
0.4 0.68986 1065 2.85835 30
0.5 0.77040 776 2.82368 31
0.6 II..S 129 1 601 2.78932 31
0.7 0.90936 177 2.75527 31
0.8 0.97093 396 2.72153 31
0.9 1.02850 333 2.68810 32
1.0 1.08271 291 2.65499 33
1.1 1.13HH 251 2.62221 32
1.2 1.18280 224 2.58975 33
1.3 1.22935 200 2.55762 32
1.4 1.27390 180 2.52581 34
1.5 1.31665 163 2.49434 33
1.6 1.35777 149 2.46320 33
1.7 1.39740 139 2.43239 33
1.8 1.43564 128 2.40191 34
1.9 1.47260 118 2.37177 34
2.0 1.50838 111 2.34197 34
2.1 1.54305 105 2.31251 35
2.2 1.57667 97 2.283 Id 33
2.3 1.60932 93 2.25462 34
2.4 1.64104 87 2.22618 34
2.5 1.67189 83 2.19808 35
2.6 1.70191 80 2.17033 34
2.7 1.73113 75 2.14292 35
2.8 1.75960 71 2.11586 33
2.9 1.78736 70 2.08913 34
3.0 1.81442 66 2.06274 35
3.1 1.84082 63 2.03670 33
3.2 1.86659 61 2.01099 34
3.3 1.89175 58 1.98562 34
3.4 1.91633 57 1.96059 33
3.5 1.94034 55 1.93589 34
3.6 1.96380 — 53 1.91153 + 33



Nr. 5 9

t s A M" M" /3 M" /5 M"

0.0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 0
0.1 .00033 + 199 .00033 + 199 .00033 + 198 .00033 + 198 .00033 + 198
0.2 .00262 382 .00261 377 .00260 373 .00259 369 .00258 364
0.3 .00868 535 .00861 520 .00853 504 .00845 490 .00838 475
0.4 .02002 6 17 .01970 612 .01940 578 .01909 546 .01880 515
0.5 .03773 710 .03682 647 .03593 589 .03507 534 .03424 li 482
0.6 .06245 720 .06030 625 .05825 538 .05628 459 .05438 388
0.7 .09428 681 .08995 550 .08585 436 .08199 337 .07833 250
0.8 .13283 596 .12502 434 .11776 298 .11101 185 .10474 + 92
0.9 .17727 474 .16437 288 .15261 + 141 .14188 + 27 .13207 — 61
1.0 .22641 328 .20658 + 130 .18887 — 16 .17303 —119 .15884 191
1.1 .27881 169 .25009 — 28 .22500 158 .20304 239 .18377 285
1.2 .33290 + 9 .29335 170 .25961 273 .23072 323 .20592 339
1.3 .38709 —141 .33495 289 .29154 354 .25524 369 .22475 355
1.1 .43990 272 .37371 377 .32000 401 .27614 380 .24009 339
1.5 .49004 378 .40876 432 .34451 414 .29328 362 .25209 302
1.6 .53645 155 .43955 456 .36493 399 .30684 325 .26109 252
1.7 .57837 502 .46582 452 .38141 364 .31717 275 .26757 200
1.8 .61531 521 .48761 426 .39426 316 .32476 222 .27205 150
1.9 .64710 514 .50517 384 .40397 262 .33012 170 .27502 107
2.0 .67377 487 .51892 332 .41105 209 .33378 125 .27690 73
2.1 .69561 445 .52935 276 .41604 159 .33616 88 .27804 47
2.2 .71301 392 .53703 221 .41943 116 .33766 59 .27870 29
2.3 .72651 334 .54250 170 .42165 81 .33856 37 .27907 17
2.4 .73668 275 .54625 126 .42303 54 .33907 23 .27926 9
2.5 .74409 219 .54872 90 .42386 35 .33935 13 .27935 5
2.6 .74930 168 .55029 61 .42433 21 .33949 7 .27939 2
2.7 .75283 124 .55123 10 .42458 12 .33955 3 .27941 — 1
2.8 .75510 87 .55176 24 .42471 6 .33958 2 .27942 0
2.9 .75649 58 .55205 14 .42477 3 .33960 — 1 .27942 0
3.0 .75728 37 .55218 7 .42479 1 .33960 0
3.1 .75770 21 .55225 3 .42480 — 1
3.2 .75789 11 .55227 1 .42480 0
3.3 .75797 5 .55228 0
3.4 .75800 — 2 .55228 0
3..') .75800 0



10 Nr. 5

1 A M" A M" A M" A M” Ao M"

0.0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 0
0.1 .00033 + 197 .00033 + 197 .00033 + 197 .00033 + 196 .00033 + 196
0.2 .00257 360 .00256 356 .00255 351 .00254 3 17 .00253 3 13
0.3 .00830 461 .00823 446 .00816 433 .00809 419 .00802 406
0.4 .01851 485 .01822 456 .01794 428 .01767 402 .01740 376
0.5 .03342 434 .03263 389 .03187 346 .03112 306 .03040 269
0.6 .05257 322 .05083 263 .04916 210 .04756 162 .04602 + 119
0.7 .07488 174 .07161 109 .06851 + 52 .06558 + 4 .06281 37
0.8 .09890 + 16 .09347 - 46 .08841 95 .08369 —134 .07929 164
0.9 .12311 —127 .11492 175 .10741 209 .10052 232 .09420 245
1.0 .14612 237 .13468 264 .12439 278 .11512 280 .10675 276
1.1 .16682 306 .15189 309 .13869 301 .12700 285 .11662 264
1.2 .18455 333 .16607 313 .15004 286 .13609 256 .12390 226
1.3 .19901 324 .17718 287 .15858 248 .14265 210 .12894 176
1.4 .21028 290 .18546 242 .16466 198 .14712 159 .13223 126
1.5 .21867 243 .19134 190 .16877 146 .15000 111 .13425 83
1.6 .22465 190 .19530 140 .17141 102 .15175 73 .13541 51
1.7 .22872 141 .19786 97 .17301 66 .15276 44 .13604 29
1.8 .23136 99 .19942 64 .17394 40 .15330 25 .13636 16
1.9 .23300 65 .20033 39 .17444 23 .15358 14 .13652 8
2.0 .23398 41 .20083 23 .17470 12 .15372 7 .13659 4
2.1 .23452 24 .20109 12 .17483 6 .15378 3 .13662 2
2.2 .23482 14 .20122 6 .17488 3 .15380 1 .13663 1
2.3 .23496 7 .20128 3 .17491 1 .15381 1 .13663 0
2.4 .23503 4 .20131 1 .17492 — 1 .15382 0
2.5 .23507 2 .20132 — 1 .17492 0 .15382 <>
2.6 .23508 1 .20132 0
2.7 .23508 o

Ai M" a2 M" As M" A< M" M''

0.0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 0
0.1 .00033 + 196 .00033 + 195 .00033 + 195 .00033 + 195 .00033 + 194
0.2 .00252 338 .00251 334 .00250 330 .00249 326 .00248 322
0.3 .00795 393 .00788 380 .00781 368 .00774 355 .00767 343
0.4 .01713 352 .01687 328 .01662 305 .01637 283 .01612 263
0.5 .02970 234 .02901 202 .02835 172 .02771 I 1 1 .02708 + 118
0.6 .04454 + 80 .04312 + 45 .04176 + 14 .04045 — 14 .03919 38
0.7 .06019 - 71 .05770 —100 .05534 —124 .05310 111 .05098 160
0.8 .07518 187 .07134 203 .06776 214 .06441 221 .06127 224
0.9 .08839 251 .08305 252 .07814 248 .07361 241 .06942 232
1.0 .09918 265 .09233 252 .08611 236 .08046 219 .07532 201
1.1 .10739 242 .09915 218 .09178 195 .08518 173 .07924 152
1.2 .11322 197 .10382 169 .09552 144 .08817 122 .08164 103
1.3 .11709 145 .10680 119 .09781 97 .08993 78 .08300 63
1.4 .11951 99 .10857 77 .09912 59 .09090 45 .08370 35
1.5 .12092 62 .10956 46 .09981 33 .09138 24 .08404 18
1.6 .12169 36 .11008 25 .10015 17 .09161 12 .08420 8
1.7 .12209 19 .11033 13 .10031 8 .09171 5 .08426 3
1.8 .12228 10 .11044 6 .10038 4 .09175 2 .08428 1
1.9 .12237 4 .11049 3 .10040 1 .09176 1 .08429 0
2.0 .12240 2 .11051 1 .10041 1 .09177 0 .08429 0
2.1 .12242 — 1 .11051 0 .10042 0 .09177 0
2.2 .12242 0 .11052 0 .10042 0
2.3 .11052 0



Nr. 5 11

e A« M" Z17 M" 18 M" M" J1 20 M"

0.0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 0
0.1 .00033 + 194 .00033 + 193 .00033 + 193 .00033 + 193 .00033 + 192
0.2 .00247 317 .00246 313 .00245 309 .00244 305 .00243 301
0.3 .00761 332 .00754 320 .00748 309 .00741 298 .00735 287
0.4 .01588 243 .01564 223 .01541 205 .01518 188 .01496 171
0.5 .02647 + 93 .02588 + 71 .02530 + 50 .02474 + 31 .02420 + 13
0.6 .03798 60 .03682 — 79 .03571 — 95 .03463 —110 .03360 —122
0.7 .04897 172 .04706 181 .04524 188 .04352 193 .04188 196
0.8 .05834 224 .05559 222 .05301 218 .05059 212 .04832 205
0.9 .06556 221 .06199 210 .05869 197 .05562 184 .05278 172
1.0 .07064 184 .06635 167 .06244 151 .05885 136 .05556 121
1.1 .07389 132 .06907 116 .06469 101 .06073 87 .05712 75
1.2 .07582 86 .07061 72 .06593 60 .06172 49 .05791 40
1.3 .07686 50 .07141 40 .06655 31 .06219 25 .05828 19
1.4 .07738 26 .07179 20 .06683 15 .06240 11 .05843 8
1.5 .07762 12 .07196 9 .06695 6 .06248 5 .05849 3
1.6 .07772 5 .07203 4 .06699 2 .06251 2 .05851 1
1.7 .07776 2 .07205 — 1 .06701 1 .06252 1 .05852 0
1.8 .07777 1 .07206 0 .06701 0 .06252 0 .05852 0
1.9 .07778 0 .07206 0
2.0 .07778 o

f Al AI" ^22 M" J7 23 M"

0.0 .00000 0 .00000 0 .00000 0
0.1 .00033 192 .00033 + 191 .00033 + 191
0.2 .00242 297 .00242 293 .00241 289
0.3 .00728 277 .00722 266 .00716 256
0.4 .01473 + 155 .01452 + 139 .01431 + 125
0.5 .02367 — 4 .02315 — 19 .02265 — 33
0.6 .03261 133 .03165 142 .03073 149
0.7 .04033 197 .03885 197 .03744 195
0.8 .04619 198 .04418 190 .04230 181
0.9 .05014 159 .04769 147 .04541 135
1.0 .05253 108 .04975 96 .04718 85
1.1 .05383 64 .05083 55 .04808 47
1.2 .05447 33 .05134 27 .04849 22
1.3 .05475 15 .05155 12 .04865 9
1.4 .05486 6 .05164 5 .04871 3
1.5 .05490 2 .05167 2 .04873 — 1
1.6 .05492 1 .05167 0 .04874 0
1.7 .05492 0 .04874 0



12 Nr. 5

1 M" M" W3 M” W4 M" W6 M"

0.0 3.0000 —160 3.0000 —200 3.0000 —240 3.0000 280 3.0000 —321
0.1 2.9920 160 2.9900 199 2.9880 239 2.9860 278 2.9840 318
0.2 2.9681 158 2.9601 196 2.9522 234 2.9443 272 2.9364 310
0.3 2.9284 155 2.9107 191 2.8930 227 2.8754 262 2.8578 296
0.4 2.8733 150 2.8122 184 2.8112 216 2.7804 247 2.7498 276
0.5 2.8033 144 2.7553 174 2.7078 202 2.6608 227 2.6143 250
0.6 2.7188 137 2.6510 162 2.5843 184 2.5186 203 2.4539 217
0.7 2.6206 128 2.5305 148 2.4424 163 2.3562 173 2.2719 178
0.8 2.5096 118 2.3953 131 2.2843 138 2.1766 138 2.0723 132
0.9 2.3869 106 2.2469 112 2.1124 109 1.9833 98 1.8596 79
1.0 2.2536 92 2.0875 89 1.9297 76 1.7803 53 1.6390 — 22
1.1 2.1111 77 1.9192 64 1.7396 40 1.5720 5 1.4163 + 38
1.2 1.9609 60 1.71 15 37 1.5454 1 1.3632 + 45 1.1975 98
1.3 1.8047 11 1.5662 — 7 1.3512 + 39 1.1589 94 0.9884 153
1.4 1.6445 — 20 1.3871 + 23 1.161)8 78 0.9639 139 0.7944 200
1.5 1.4823 + 1 1.2104 54 0.9782 115 0.7827 177 0.6202 234
1.6 1.3203 24 1.0391 84 0.8070 148 0.6190 206 0.4691 251
1.7 1.1606 47 0.8761 112 0.6505 173 0.4756 222 0.3428 251
1.8 1.0056 69 0.7242 135 0.5112 190 0.3542 224 0.2413 236
1.9 0.8574 90 0.5857 154 0.3906 197 0.2549 214 0.1632 208
2.0 0.7183 109 0.4625 165 0.2896 193 0.1769 192 0.1057 172
2.1 0.5899 125 0.3557 169 0.2076 180 0.1179 164 0.0654 134
2.2 0.4740 136 0.2656 166 0.1435 160 0.0753 132 0.0385 98
2.3 0.3715 142 0.1920 156 0.0953 135 0.0458 100 0.0215 67
2.4 0.2832 144 0.1338 139 0.1)606 108 0.0265 72 0.0113 43
2.5 0.2091 139 0.0896 120 0.0366 82 0.0145 49 0.0055 26
2.6 0.1489 130 0.0572 98 0.0209 59 0.0074 31 0.0025 15
2.7 0.1016 117 0.0346 76 0.0112 10 0.0035 18 0.0011 8
2.8 0.0659 100 0.0197 56 0.0056 25 (1.0015 10 0.0004 4
2.9 0.0402 82 0.0104 39 0.0025 15 O.OOO6 5 0.0001 2
3.0 0.0227 64 0.0049 25 0.0010 8 0.0002 2 0.0000 + 1
3.1 0.0116 46 0.0021 15 0.0004 4 O.OOO1 + 1 0.0000 0
3.2 0.0052 31 0.0007 8 0.0001 2 0.0000 0
3.3 0.0019 18 0.0002 3 0.0000 4- 1
3.4 0.0005 9 0.0000 + 1 0.0000 0
3.5 0.0001 + 3 0.0000 0
3.6 0.0000 o



Nr. 5 13

f w, M" W7 M" w, M" 1V9 M" Wlo M"

0.0 3.0000 —361 3.0000 —401 3.0000 —441 3.0000 —482 3.0000 —522
0.1 2.9820 357 2.9800 397 2.9780 436 2.9760 475 2.9741 514
0.2 2.9285 347 2.9206 384 2.9127 420 2.9048 456 2.8970 492
0.3 2.8403 329 2.8229 361 2.8056 393 2.7882 424 2.7710 454
0.4 2.7195 304 2.6893 330 2.6593 355 2.6295 377 2.6000 399
0.5 2.5683 270 2.5228 288 2.4778 304 2.4334 316 2.3894 327
0.6 2.3903 228 2.3278 236 2.2663 239 2.2058 240 2.1464 236
0.7 2.1896 178 2.1093 173 2.0310 163 1.9546 149 1.8801 130
0.8 1.9713 119 1.8737 100 1.7795 - 76 1.6886 — 46 1.6010 — 12
0.9 1.7412 - 53 1.6283 - 21 1.5206 + 18 1.4182 + 62 1.3209 + 111
1.0 1.5059 + 17 1.3808 + 63 1.2635 114 1.1539 169 1.0517 227
1.1 1.2723 89 1.1396 144 1.0177 203 0.9063 262 0.8048 321
1.2 1.0475 156 0.9126 216 0.7919 275 0.6845 331 0.5894 381
1.3 0.8382 214 0.7069 272 0.5931 323 0.4951 366 0.4113 399
1.4 0.6499 256 0.5280 304 0.4262 341 0.3418 365 0.2725 376
1.5 0.4870 279 0.3791 311 0.2927 328 0.2243 331 0.1707 322
1.6 0.3515 280 0.2608 293 0.1916 290 0.1395 274 0.1008 251
1.7 0.2438 262 0.1713 255 0.1191 236 0.0820 209 0.0560 178
1.8 0.1619 228 0.1072 207 0.0702 178 0.0454 146 0.0291 116
1.9 0.1027 186 0.0637 156 0.0390 124 0.0236 94 0.0142 69
2.0 (1.0021 141 0.0359 109 0.0204 80 0.0115 56 0.0064 38
2.1 0.0356 101 0.0190 71 0.0100 48 0.0052 31 0.0027 19
2.2 0.0193 67 0.0095 43 0.0046 26 0.0022 15 0.0011 9
2.3 0.0098 42 0.0044 24 0.0020 13 0.0009 7 0.0004 4
2.4 0.0047 24 0.0019 13 0.0008 6 0.0003 3 0.0001 + 1
2.5 0.0021 13 0.0008 6 0.0003 3 0.0001 + 1 0.0000 0
2.6 0.0008 6 0.0003 3 0.0001 + 1 0.0000 0
2.7 0.0003 3 0.0001 + 1 0.0000 0
2.8 0.0001 + 1 0.0000 0
2.9 0.0000 0

Í M" W« Af" W18 M" M" W1B M"

0.0 3.0000 —562 3.0000 —602 3.0000 —643 3.0000 —683 3.0000 —723
0.1 2.9721 553 2.9701 592 2.9681 631 2.9661 670 2.9641 709
0.2 2.8891 527 2.8813 562 2.8735 597 2.8657 631 2.8579 665
0.3 2.7538 483 2.7367 511 2.7196 538 2.7027 564 2.6857 589
0.4 2.5706 419 2.5415 437 2.5125 454 2.4838 469 2.4552 483
0.5 2.3459 334 2.3029 340 2.2604 3 13 2.2185 343 2.1770 341
0.6 2.0881 229 2.0308 219 1.9746 205 1.9194 188 1.8653 —168
0.7 1.8076 —107 1.7371 — 79 1.6685 — 48 1.6019 — 12 1.5371 + 27
0.8 1.5167 + 28 1.4357 + 72 1.3579 + 119 1.2832 + 170 1.2116 223
0.9 1.2287 164 1.1414 219 1.0589 277 0.9812 335 0.9080 394
1.0 0.9567 286 0.8686 315 0.7871 402 0.7119 457 0.6428 509
1.1 0.7127 377 0.6295 429 0.5546 475 0.4873 515 0.4271 548
1.2 0.5057 424 0.4323 459 0.3684 484 0.3129 501 0.2649 509
1.3 0.3402 422 0.2801 434 0.2296 436 0.1875 429 0.1526 415
1.4 0.2160 377 0.1704 367 0.1338 319 0.1045 326 0.0813 298
1.5 0.1291 304 0.0971 279 0.0726 250 0.0540 220 0.0400 190
1.6 0.0724 222 0.0516 192 0.0366 161 0.0258 133 0.0181 108
1.7 0.0379 148 0.0255 119 0.0171 94 0.0114 72 0.0075 55
1.8 0.0186 90 0.0117 67 0.0074 49 0.0046 36 0.0029 25
1.9 0.0084 50 0.0050 34 0.0029 23 0.0017 16 0.0010 10
2.0 0.0036 25 0.0020 16 0.0011 10 0.0006 6 0.0003 4
2.1 0.0014 12 0.0007 7 0.0004 4 0.0002 2 0.0001 + 1
2.2 0.0005 5 0.0002 3 0.0001 + 1 0.0001 + 1 0.0000 0
2.3 0.0002 2 0.0001 + 1 0.0000 0 0.0000 0
2.4 0.0000 + 1 0.0000 0
2.5 0.0000 0



14 Nr. 5

f W16 M" W17 M" W18 M" W1# Af" M"

0.0 3.0000 —764 3.0000 —804 3.0000 —845 3.0000 —885 3.0000 —926
0.1 2.9621 748 2.9601 786 2.9581 825 2.9561 864 2.9542 902
0.2 2.8501 698 2.8423 731 2.8345 764 2.8268 796 2.8190 828
0.3 2.6689 614 2.6521 638 2.6353 661 2.6187 683 2.6021 704
0.4 2.4269 495 2.3987 505 2.3708 514 2.3431 522 2.3156 528
0.5 2.1361 336 2.0956 329 2.0557 320 2.0162 308 1.9773 294
0.6 1.8122 —144 1.7602 —117 1.7092 — 88 1.6593 — 55 1.6104 — 20
0..7 1.4743 + 69 1.4133 + 114 1.3542 + 162 1.2970 + 212 1.2416 + 265
0.8 1.1432 279 1.0777 336 1.0151 394 0.9555 452 0.8986 511
0.9 0.8392 452 0.7747 509 0.7143 564 0.6578 616 0.6051 665
1.0 0.5793 557 0.5212 599 0.4681 636 0.4198 667 0.3758 692
1.1 0.3735 573 0.3259 591 0.2837 602 0.2465 605 0.2137 602
1.2 0.2236 509 0.1883 501 0.1581 488 0.1324 469 0.1106 445
1.3 0.1237 394 0.1000 370 0.0806 342 0.0648 313 0.0519 283
1.4 0.0630 268 0.0487 238 0.0375 209 0.0288 181 0.0220 155
1.5 0.0295 162 0.0217 135 0.0159 112 0.0116 91 0.0084 74
1.6 0.0126 86 0.0088 68 0.0061 53 0.0042 41 0.0029 31
1.7 0.0049 41 0.0032 30 0.0021 22 0.0014 16 0.0009 11
1.8 0.0018 17 0.0011 12 0.0007 8 0.0004 5 0.0002 4
1.9 0.0006 7 0.0003 4 0.0002 3 0.0001 + 2 0.0001 + 1
2.0 0.0002 2 0.0001 + 1 0.0000 + 1 0.0000 0 0.0000 0
2.1 0.0000 + 1 0.0000 0 0.0000 0
2.2 0.0000 o| • 1

1 W2i M" W.1 Af" W23 M"

0.0 3.0000 —966 3.0090 1007 3.0000 — 1048
0.1 2.9522 940 2.9502 978 2.9482 1017
0.2 2.8113 859 2.8036 891 2.7959 921
0.3 2.5855 724 2.5690 743 2.5526 761
0.4 2.2883 532 2.2612 535 2.2343 536
0.5 1.9389 —277 1.9010 — 258 1.8636 — 237
0.6 1.5625 + 18 1.5157 + 59 1.4699 + 102
0.7 1.1880 319 1.1362 375 1.0861 432
0.8 0.8445 569 0.7930 626 0.7441 682
0.9 0.5559 710 0.5102 750 0.4677 786
1.0 0.3359 710 0.2998 723 0.2672 730
1.1 0.1849 593 0.1597 579 0.1377 561
1.2 0.0922 419 0.0767 391 0.0637 362
1.3 0.0415 253 0.0331 224 0.0263 197
1.4 0.0168 131 0.0128 110 0.0097 92
1.5 0.0061 59 0.0044 47 0.0032 37
1.6 0.0020 23 0.0014 17 0.0009 13
1.7 0.0006 8 0.0004 5 0.0002 4
1.8 0.0002 2 0.0001 + 2 0.0001 + 1
1.9 0.0000 + 1 0.0000 o 0.0000 0
2.0 0.0000 0
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1. Introduction.

r I ^he theory of a new type of ß-ray spectrometer has been
A developed previously1^ for the purpose of more efficiently 
utilizing a radioactive source than has been possible so far. In 
principle, this can be accomplished by letting several double 
focusing spectrometers of a conventional type operate on the 
same source, and preferably having the same focus. However, 
a more suitable solution was found in a design where the individual 
spectrometers consist of a number of air gaps in the same electro
magnet. Source and focus are situated in field-free space, and the 
gaps are arranged symmetrically around the line connecting them.

A preliminary investigation of a spectrometer consisting of a 
single air gap has also been described.

Since then we have constructed a spectrometer with six air 
gaps. The instrument is characterized by a large transmission 
and is especially well suited for coincidence experiments with 
scintillation counters, as the operation of the multiplier tubes is 
undisturbed by magnetic fields.

The present paper gives a description of some experience with 
this spectrometer which has now been operating for more than 
a year. In addition, a few possible new applications of the 
focusing principle will be mentioned.

2. The electron-optical system.

Let us first repeal the most essential features of the principle 
of focusing.

The instrument is shown in Figs. 1 a and 1 b. The electro
magnet consists of six segments placed as slices of an orange, 
each occupying 40° of the entire circle around the symmetry

1*
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Fig. la. Vertical section through the spectrometer.

axis. The magnetic held is localized within the six wedge-shaped 
air gaps, the angle between the pole faces thus being 20°. If 
fringing held effects are neglected, all the lines of force will be 
circular.

Il is evident that such a magnetic held is focusing along its 
own direction. Any particle starting from the source will stay in 
a plane containing the symmetry axis and, after sufficient deflec
tion in the held, will return to the axis.

In the vertical plane (Fig. la), focusing can be obtained by 
choosing a suitable limiting curve for the pole pieces. Il was 
shown theoretically (ref. 1) that a double infinity of such curves 
exists corresponding to a fixed position of the source and the 
counter. If symmetry around a plane perpendicular to the axis 
is demanded, only a single infinity remains.

'The possibility of obtaining the ideal focusing is limited only 
by effects from fringing fields which cause deviations from the 
theoretically assumed held shape.

flic existence of a fringing field, which the particles have to 
pass before entering the gap, has no serious disadvantages for
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Pig. lb. Horizontal section through the spectrometer.

the focusing in the plane of Fig. la, because it can be corrected 
for by shaping the pole pieces. In Section 6, a practical method 
for this correction is described.

Outside the central plane in each wedge-shaped gap the rays 
will be influenced by the fringing held as by a cylindrical lens2)3) 
with the focal distance

(1)

where ip is the angle between the ray and the edge of the pole 
piece (Fig. 2) and o the radius of curvature for the electron 
immediately inside the edge.
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We have made an attempt to reduce this effect by choosing 
the boundary of the pole plates approximately as circles with 
centers near the source and the focus. However, ip, and hence f, 
cannot be entirely constant along the limiting curve. Thus, the 
image of the source has a certain extension along the direction 
of the magnetic field. This has no direct bearing on the resolving 
power, but the counter must of course be constructed so as to 
accept a bundle of rays with finite width.

In the present instrument, practically the entire gap is used 
with an entrance diaphragm to the counter of 10 mm height.

Another deviation from the ideal field shape is due to the 
finite radial extension of the pole plates, which causes the field 
to be stronger al the surface of the iron than in the central plane 
of the gap. This constitutes the essential limit for the resolution 
in the present construction. In principle, the effect can be reduced 
by employing more extended pole pieces or by shimming.
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3. The magnet.

From the theory of focusing it followed that three para
meters may vary within certain limits, as far as the construction 
of the pole pieces is concerned. The three parameters are: the 
quantity b defined in eq. (2) of ref. 1, the relative distance between 
source and focus, and the function £ (a) defined by eq. (9) of 
ref. 1. Furthermore, when constructing the spectrometer, one has 
to decide on the number of gaps and the angle covered by each 
of them. The final design must represent a compromise between 
the partly opposing demands of transmission, resolving power, 
maximum ^-momentum measurable, and economy.

The magnet with the corrected pole shape is shown in Fig. 1. 
As mentioned before, the individual segments have some simi
larity in shape with the slices of an orange. Each consists of five 
parts of iron screwed together. The spacers fixing their relative 
positions are of aluminium. For ease of machining, the limiting 
curves for the pole pieces are built up of circles.

fhe iron is of Swedish origin and has a low coercive force. 
Elie magnetic circuit is designed so as to avoid local satura
tion, which might influence the shape of the field. Because of 
the large air gaps the effect of hysteresis is small, and the field 
can be reproduced to within .1 per cent by adjusting the cur
rent only, provided that a suitable magnetization procedure is 
followed.

Each of the six coils consists of about 900 turns of 1.2 mm dia. 
copper wire with glass insulation, the resistance being approx
imately 6 ohms. The coil forms are water-cooled, but the thermal 
conductivity through the coils is poor since they are placed in 
vacuum. They cannot continuously carry more than 3 amps, 
corresponding to focusing of 1.5 MeV ^-particles, although satu
ration of the iron first takes place at 5 amps. Hence, the present 
construction is not quite satisfactory*.

* A spectrometer of the same type is now under construction by C. A. Mall- 
mann (Buenos Aires) who places the coils in closed containers filled with oil.

The current is furnished by a servo-controlled generator. At 
1.5 MeV the power consumption amounts to about 500 Watts.

The total weight of the magnet and the coils is only about 
1 1 0 kg.



8 Nr. 6

4. The vacuum system.

Che cylindrical vacuum container is cast in aluminium alloy. 
No troubles with vacuum leaks have been encountered. The 
pumping system consists of one 2" oil diffusion pump and a 
mechanical forepump.

5. Counter equipment.

Originally we used a GM counter with six mica windows of 
12 mm dia. It has now been replaced by a scintillation counter 
arranged as shown in Fig. la. The diameter of the anthracene 
crystal is 15 mm, and the entrance slit can be varied from 1 to 
9 mm. Due to the absence of a magnetic field, the multiplier lube 
can be placed immediately below the crystal.

It is evident that the fringing fields from the different gaps 
lend to eliminate each other, so that they are relatively less 
extended than in a one-gap spectrometer. From the symmetry it 
follows that the axis is field-free, and the multipliers can be 
shielded by iron without any effect on the focusing.

The only disadvantage of the scintillation counter is its higher 
background when low energy ^-particles are to be counted. We 
hope to reduce this effect considerably by replacing the present 
multiplier tube type EMI 6260 by an EMI 6094, which has a 
photo-cathode of only 10 mm dia.

6. Investigation of a single gap.

a. Empirical determination of the shape of I he pole pieces.
The necessary corrections to the shape of the pole pieces were 

found by measurements similar to those carried out on the 
single-gap model of ref. 1.

The aperture was subdivided into a series of regions which 
were investigated individually. The corresponding openings in 
tin*  entrance diphragms are shown in Fig. 3. For each diaphragm 
the magnetization current required to focus the F line from ThB 
was measured. Source and counter could be moved along the
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Fig. 3. Entrance diaphragms used in the investigation of the pole shape 
corrections.

axis from outside the vacuum, and the measurements were 
repeated for a set of different positions, ail being symmetrical 
about the central plane.

The results of a series of such measurements are shown in 
Fig. 4. The magnitization current Im is given as a function of 
the diaphragm no., i. e. of the angle d. Fach curve represents a 
value of the distance L between source and counter.

Changes in L influence the focusing current less in the outer 
part of the gap than in the inner part. This is due to the variation 
of the dispersion witli ft, as found theoretically in ref. 1. As a 
consequence, the curves show maxima or minima when the 
distance L is within certain limits.

Around such maxima the aberration is at most of second 
order. The condition for first order focusing is thus fulfilled. Even 
considerable deviations from the theoretical field shape will not 
prevent the occurrence of such extrema.

After the choice of a certain L the aberration can be reduced 
by working the pole pieces in the regions where the deflection 
is too great. We have chosen L = 165 mm, and after the final 
correction the focusing current for a line is constant to within 
one per cent. A further reduction of the aberration was not con-



sidered necessary because other contributions to the line width 
are of the same order of magnitude.

b. Some practically important properties of the electron orbits.
Curves like those drawn in Fig. 4 can also be represented in 

a diagram where Ini is plotted as a function of L for each dia
phragm. Ideal focusing means that all curves have to pass 
through a common point. For the corrected pole pieces the case 
is illustrated in Fig. 5.

In a symmetric spectrometer (£ (a) = 0) an image is formed 
with magnification of unity, as shown theoretically in ref. 1. 
This implies that a small shift in the position of the source 
introduces the same shift in the focus. This effect was verified 
by observing that a simultaneous displacement of source and 
focus by 10 mm in the same direction caused only small changes 
of the curves in Fig. 5.

The slope of the lines in Fig. 5 determines the dispersion I) 
for the corresponding part of the gap, since
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Fig. 5. The focusing current as a function of the distance between source and 
counter. Each curve corresponds to a diaphragm as numbered in Fig. 3. Results 

obtained with corrected pole pieces.

'Fhe mean value of 1) is 310 mm or 1.9 times the distance L.
The variation of J) causes a smearing out of the image when 

the magnetization current deviates from the focusing value 
(Fig. 6). However, at the same time a contraction in the pencil 
of rays appears outside the axis of symmetry. In fact, a focus 
line exists which represents a surface on which a portion of the 
spectrum is focused with good resolution. Each point on this line 
is characterized by a curve like those in Fig. 4 with a broad 
maximum in the central part.

By moving the entrance slit to the counter along the focus 
line, a resolution of I,n/Im < two per cent was found over an
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interval covering 15 per cent change in electron momentum. The 
existence ol’ the line of focus leaves some freedom in the choice 
of the counter diameter.

Image formation outside the axis of symmetry is accompanied 
by a moderate increase in the height of the image, corresponding 
to a divergence of 20° for the bunch of rays in the direction of the 
lines of force.

c. 77ie aberration across the (jap.
The shape of the F line was measured through diaphragm 

no. 4 with apertures corresponding to three different values of 
the angle <p. The results are shown in Fig. 7. The contributions 
to the line width from the extension of the source and the entrance 
slit of the counter amount to ~ .5 per cent. Il is seen that the 
particles passing close to the surface of the iron reach the counter 
for a slightly lower current than those moving in the central plane
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Fig. 7. Line shape measured with différent opening angles <p in diaphragm no. 4. 
The curves are normalized at the maximum point.

of the gap. 'fliis contribution is of the order ~,3 X <p2 in the 
part of the gap considered. As mentioned previously, this aber
ration depends upon the construction of the magnet and can be 
reduced in principle.

cl. The transmission from a point source.
As in other spectrometers, tlie resolving power depends on 

the utilized solid angle. We have carried out an experimental 

determination of the relationship between the resolution R — [
Ap 
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and the transmission T, defined as the fraction of particles emitted 
from a mono-energetic source, which are counted at the peak 
of the line.

fhe total emission was found by a measurement of the line 
(F line from 77¡B) through a small hole in a diaphragm. The

counter slit was so wide that the height of the line represented 
the solid angle defined by the diaphragm.

The transmission could then easily be determined for a number 
of different combinations of entrance diaphragms and counter 
slits. In each case, the latter were adjusted to approximate the 
same magnitude as the image. During these experiments the 
source dimensions were so small that their influence on the shape 
could be neglected.
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Some of the results are seen in Fig. 8. The curve P7'2 = .018 
gives a reasonable fit to the measurements. The maximum trans
mission of 2.0 per cent for a single gap may be compared with 
the total opening for each gap of 2.3 per cent of 4 .t.

e. Extended source.
The mean dispersion 310 mm can be used for an evaluation 

of the influence on the line shape of the dimensions of source 
and counter slit. In practice, a source area of 5 X 10 mm can be 
used at a resolution of 2.5 per cent.

7. The use of several gaps.

The use of the same source with several gaps demands ol 
course a more detailed analysis.

It is mainly the same magnetic flux which has to pass through 
the entire magnetic circuit. Therefore, mechanical and electrical 
différences in the construction of the parts of the magnet have 
only a minor influence on the magnetic properties ot the individual 
gaps. The maximum difference in field strength was reduced to 
less than .5 per cent by small corrections to the number of turns 
in some of the coils.

At present the entire spectrometer is used with a resolution 
of all six gaps of 1 ¡R ~ 1.6 per cent without any appreciable 
effect on the line shape from the differences in field strength in 
the gaps, fhe corresponding transmission amounts to 9 per cent 
of 4 71.

In a measurement of the maximum energy of the continuous 
^-spectrum of P334\ the resolution was reduced to 2.5 per cent 
in order to obtain higher intensity. The spectrum could then be 
measured with a total activity of 5 X 104 source disintegrations 
per minute. The background counting rate in the GM tube was 
10 counts per minute.

When high resolution is desired, only one gap is employed. 
Only three gaps can be used when the energy of the spectrum 
is so low that the passage of particles through the supporting 
foil must be avoided.



ence spectrum. Random coincidences subtracted.
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8. Application as coincidence spectrometer.

The field-free space around the axis implies that the spectro
meter is especially well suited for coincidence investigations. In 
Fig. la is shown the position of a ZnS-screen and a multiplier 
tube immediately behind the source. Since the ZnS-screen covers 
30 per cent of the total solid angle, the transmission for /Mines 
is ~ 3 per cent in the coincident spectrum.

The upper part of Fig. 9 shows a portion of the complex 
77t(B + C + C) /^-spectrum; below we see the corresponding 
spectrum for coincidences between electrons and a-parlicles. The 
weak lines following the a-decay of ThCo) can hereby be studied 
without any disturbance from the extremely strong neighbouring 
lines. The continuous background is due to /^-particles from 
ThC in coincidence with the a-group from ThC/A, the half life of 
which, 3 X 10-7 sec., is of the order of magnitude of the resolving 
time of the coincidence circuit.

Instead of the ZnS-screen we can of course use an anthracene 
crystal for ß—^-coincidences or a Nal crystal for ß—y-coincid- 
ences. It is our intention in the near future to insert one further 
multiplier with a crystal where the lead screen is now situated 
(Fig. la). This will imply, on the one hand, a doubling of the 
efficiency and, on the other hand, will make possible triple coin
cidence investigations of decays where three particles are emitted 
in cascade.

9. Further applications of the focusing principle.

C. A. Mallmann6)7) has shown the possibility of constructing 
a double spectrometer for ß—^-coincidences by placing two 
magnets above each other. The /Mays can be focused simul
taneously in two spectrometers when the gaps are limited to 
accept particles at angles & > 90°.

A spectrometer with pole pieces shaped as sketched in Fig. 10 
can be used as a pair spectrometer, since positive and negative 
particles can be focused simultaneously. Focusing is achieved by 
shaping of the two outer boundaries, while the central limiting 
curve can be kept symmetrical and close to a circle.

Dan. Mat Fys.Medd 29, no.6. 2
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A betler relation between R and T will be obtained in this 
wedge-shaped field than in a homogeneous field. Furthermore, 
the efficiency is multiplied by the number of gaps. Also some 
of the advantages gained in the spectrometer developed by 
McDaniel and Walker8) are obtained. Thus, the existence of 
the focal line makes it possible to work with, say, up to 2x4 
counters placed close to each other. The extension of the con
verter is of relatively minor importance, since the sum of the 
momenta of electron and positron to the first approximation 
depends only on the relative distance between the two struck 
counters.

A magnet with a wedge-shaped field in a single air gap will 
be advantageous as double focusing spectrometer for heavy 
particles. In such instruments, the utilization of the theoretical 
solid angle demands very large magnets. In this respect, the 
proposed design is cheaper than the type used at present9’. 
This results from the fact that the magnetic field should exist 
only in the space occupied by the beam of particles, whereas 
the conventional types utilize only the central part of the field 
in full height.
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We wish to express our gratitude to Professor Niels Bohr for 
his interest in our work and for the excellent working conditions 
at his institute. We are also indebted to Mr. J. Lindhard for 
theoretical discussions.

Summary.

A ^-spectrometer is described. It is constructed according to 
a new principle developed previously. A transmission of 9 peí- 
cent is obtained at a resolution of 1.6 per cent. The instrument 
is especially well suited for coincidence investigations with 
scintillation counters.

Some of the properties of the spectrometer are discussed from 
a practical point of view. A few new applications for the focusing 
principle are suggested.

Institute for Theoretical Physics, 
University of Copenhagen, Denmark.
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Introduction.

npMie absorption spectrum of uranium (IV) ions is interpreted 
JL as the atomic spectrum of the free ion with little influence 
from crystal fields. It is compared with the theoretical predictions 
of Condon and Shortley for systems with two /'-electrons. The 
identification is supported by the behaviour of the spectrum of 
different complexes and by a new band in the ultraviolet. The 
energy levels are related to the actinide hypothesis, and chemical 
conclusions drawn from the absence of very strong absorption 
bands.

fhe absorption spectra of the lanthanide and actinide ions 
consist of narrow bands, which are not much influenced by 
chemical changes in the complexes. They are supposed to be 
practically the same as the atomic spectra of the free ions in 
vacuo, while the ordinary transition group ions have absorption 
spectra that are strongly dependent on the crystal field pertur
bations of the ligands.

'Fhe theoretical interpretation of the lanthanide spectra has 
been successful in simple cases. According to Pauli’s equivalence 
theorem of electrons and holes, /'"gives the same number of terms 
as /''l-n. Thus, f2 and f12 both correspond to two effective electrons, 
as found in Pr and Tin' . The absorption spectrum of 
the praseodymium ion is discussed by Ellis,1 Gobrecht,2 Lange,3 
and Spedding,4 while Bethe and Spedding3 interpreted the thu
lium ion spectrum. Recently, the 3-electron system Nd has 
been described by Satten.6 Besides this, only the ground-levels 
and some few other levels of the complicated lanthanide ions 
have been identified.

'Fhe atomic spectra of 4 f2 are best known from IaP , studied 
by Bissell and Meggers.' Later the 5/^-system Th was 

1*  
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studied by de Bruin, Klinkenberg and Schuurmans.8 Of the 
5 /^-systems of chemical interest U" 1 is perhaps the best known, 
'fhe absorption spectra of uranium (IV) complexes are the main 
subject of the following discussion.

Theoretical Predictions.

Condon and Shortley9 give a general treatment of the inter
action between a few electrons by different coupling-schemes, 
which are idealized simplifications of the observed distribution 
of energy levels. In particular, the intermediate cases between 
(L, S) coupling (the Bussell-Saunders case) and (j, /) coupling 
are discussed. Although (j,j) coupling is most prominent in the 
heavy atoms, particularly at the ends of the periods, (L, S) 
coupling will presumably be predominant in L

The electrostatic interaction of two equivalent /"-electrons is 
given9 as functions of the integrals Fo, F2, Fit and F6, which 
are determined by the electric field of the kernel, in this case the 
emanation configuration. Satten6 points out that the inequalities

Ft < 0.202 F2 and Fe < 0.0306 F2 (1)

arc valid from the definition of these integrals9 (The inequality 
F6 < 0.00306 F2 is erroneously given in Satten’s paper).

In the cases*  hr, Pr + + , and Th (ref. 7, 4, and 8, respec
tively) these integrals are given in the energy unit cm ’.

F8

La+............. .... 93.3 cm“1 21.6 cm 1 0.26 (*m
Pr+ + + ......... .... 232 47
Th++.......... .... 20« 42 4.6

It is most probable that the ratio b\IF2 has nearly the maximum 
value, i. e. 0.2.

'Fhe possibility of F6 being approximately 0.03 F2 is very im
portant for the position of some of the terms. Fable 1 in the first 
two columns gives the electrostatic interaction of f2 in the two

* Racah41 has later given the parameters F2 = 193, F., = 36, and FG 
3.4 cm-1 for 771+ + , while Klinkenbf.rg42 gives the valnes 200, 55, and 4.3 cm ', 
respectively. 
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cases (F4 = 0.2 F2 an(l = 0) and (Ft — 0.2 F2 and F6 = 
0.02 F2). The energy 2 Fo, which is constant for all the given 
terms, is not considered.

The next column of Table I gives the interval splitting, 
expressed9 by the Lande interval factor C- This energy is added 
to the electrostatic interaction to give the energy of the level 
relative to the other levels of f2.

Only in the limiting case where £ = 0 the Russell-Saunders 
(L, S) coupling is completely in concordance with the experimental 
data. For increasing values of £ the atom will approximate to 
(j,j) coupling, and eventually L and S will no longer have physical 
significance, but only the vector sum ./ from the j of the individual 
electrons. The intermediate coupling cases can be quantitatively 
treated by the perturbation theory, c. g. as applied by Spedding.4 
For the values of ./ where only one level is represented in the 
configuration (as in the case of /‘2, with odd ./ valnes), no perturba
tion is predicted. In the cases where two (J — 0 and 6) or three 
(J = 2 and 4) levels exist with the same ./, the perturbation 
energy is given as a function of £ and the distances between the 
levels which perturb each other. The secular determinants pro
ducing these functions are given by Spedding.1 In the simple 
case with only two levels the energies are thus: 

^6

and

where S, P,
'fhe negative sign of the square root is used for the energy of the 
lower of the two perturbed levels, and the positive sign for the 
higher energy.

'fhe last column of 'fable 1 gives the sign of the perturbation 
energy. In the cases of ./ = 2 and 4 the outermost levels are 
perturbed Io greater distances, and the displacement of the middle 
one is determined by the position of the two other levels.

This theory does not consider the perturbation from electron 
configurations other than /’2 (see ref. 9, chapter 15). This con-

= /+h2+5c±{('-" -57+«t.p

S + P— 2 t Í IS — P+2 L\2 I -■ 2 ±i(—r^-)+48f>}2-
H, and / are the electrostatic energies of the terms.
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Table 1. The Condon-Shortley energies of /2.

Level

Electrostatic interaction 
energy

Multiplet 
splitting clue 

to (L. S) 
interaction

Sign of 
perturbation 

energyFt = 0.2 F,
F. = 0

Ft = 0.2 F,
F, = (».02 F,

— 35.2 F, — 35.5 F, 6C
3^S — 35.2 —.35.5 1 0
3He — 35.2 35.2 + 5 —
3F2 — 16.6 — 22.3 4 —
3f3 16.6 -22.3 1 0

— 16.6 22.3 + 3 + or
— 10.4 — 9.0 0 +

1D2 — 0.8 + 13.5 0 + or
^6 + 26.8 + 26.8 0 +
3F0 + 51.6 + 25.0 2 —
3Pr + 51.6 + 25.0 1 0
3P2 + 51.6 + 25.0 + 1 +
1S0 + 99.6 + 133.9 0 +

figuration interaction takes place between terms with the same 
L, S and parity. Thus all configurations [Em] 6d2, [Em] 5g Is, 
and [Em] 5f7p are able to interact with some terms of [Em] 5/'2. 
In many cases, the configuration interactions in heavy atoms will 
remove the physical significance of electron configurations. The 
wave-functions of the individual terms will be mixtures of the 
corresponding hydrogen-like wave-functions of the pure electron 
configurations. Il is almost impossible to predict the direction 
of the displacement of the levels, due to configuration interaction, 
before the atomic spectrum of e. g. Í7 1 1 is analyzed. This refine
ment cannot be expected yet, since the very complicated line 
spectra of the actinide elements are extremely difficult to disen
tangle. The chemical absorption spectroscopy may here give 
information to atomic spectroscopists about the terms of the 
lowest configuration of the given ion.

Experimental.

Most absorption spectra of dissolved uranium (IV) salts have 
been measured on the sulphate, chloride or bromide. While 
Ahrland and Larsson10 in the two last cases have shown that
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Fig. 1. Absorption spectrum of aquo uranium (IV) ions from measurements in

1 M and 5 .W at 25° C. The molar extinction coefficient e =
cl

is given as a function of the wave number in the range 8500—25500 cm-1. The 
path width / is 1 cm and the concentration c of is 0.1 M and 0.02 M.

the halide complexes are not very strong, the aquo ion can best 
be studied in uranium (IV) perchlorate with enough perchloric 
acid added to suppress formation of hvdroxo compounds.

Among the spectra given in the literature Formaner11 in
vestigated solutions in hydrochloric acid, which also clearly 
showed uranium (III) bands. Jones and Strong12 made a very 
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extensive spectrographic study of uranium (IV) salts, their plate 
92 A of LJlii’n in water is the nearest comparable with the aquo 
ion spectrum given in the present paper. Kato13 also photographed 
the uranium (IV) spectrum. Ephraim and Mezener14 studied 
the spectra of several solid salts and also UCl^ in different solvents. 
Dreisch and Kallscheuer10 extended the investigations to the 
infra-red and found several bands which were independent of 
the anion. Later Kraus and Nelson16 discussed the influence of 
the hydroxo-complexes, and Freed and Leitz1' stressed the 
theoretical significance of the actinide spectra.

Fig. 1 gives the spectrum of uranium (IV) perchlorate, mea
sured with a Beckman DU spectrophotometer at 25° C. The 
observed molar extinction coefficients e were coincident within 
experimental uncertainty when the solvent was 14/ or 5 A/ 
perchloric acid, showing almost no influence of hydroxo-com
plexes.

An excess of perchloric acid was added to a solution of 
uranyl perchlorate (originally prepared by Mr. Hakon Nord, 
M. Sc., from Merck’s uranyl acetate) and the resulting solution 
reduced either electrolytically with a mercury cathode or with 
zinc amalgam. The latter method is more effective for removing 
the last traces of uranyl ions. Only very small amounts of chloride 
ions were formed during the reduction. The content of uranium 
(IV) was determined by titration with permanganate. The measure
ment of the finer details of the absorption bands (see lig. 1) were 
repeated on several occasions.

Considerable transmission of the pure uranium (IV) solutions 
in the ultraviolet was observed—between 400 m/z and 300 m/z the 
molar extinction coefficient is well below 1. When further mea
surement with the hydrogen lamp were performed at shorter 
wave lengths it was evident that uranyl ions formed by oxidation 
were the most prominent absorbing material. However, a new 
band appeared at 245 m/z, narrow and with a moderate extinction 
coefficient, maximally about 20. This band resembles the other 
bands found in the visible spectrum. Fig. 2 shows that it cannot 
reasonably be attributed to oxidation, since the uranyl spectrum 
increases in the interesting range without the faintest sign of a 
peak. The background in the uranium (IV) spectrum is presum
ably only partially due to the uranyl impurities. The narrow band 
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was also found in U (CIO^ prepared from a sample of Na2U2,O1 
of different origin.

The spectrum of the oxalato-complexes was also studied in 
a solution prepared from the UÇClO^t stock solution and a nine
fold volume of saturated potassium oxalate (2 M), from which 
the KC10t formed was filtered. This solution presumably contains 
the almost pure tetraoxalato complex.

Fig. 2. Absorption spectrum of uranium (IV) and uranyl ions in the range around
245 m/z. The uranyl spectrum (from UOa (C/O4)2 in 1 M HClOt) is multiplied by

0.02 and given for comparison.

Table 2 gives the band-groups with their wave numbers and 
their graphically integrated area18 \ edv in the aquo ion spectrum, 
and the wave numbers of the bands of oxalato-complexes.

Since the spectrum of uranium (IV) complexes is not highly 
influenced by complex formation, the crystal field perturbations 
are small as compared with the multiplet splitting determined 
by the Lande factor £. Since the thermal energy is small as com
pared with C (Á-'/’at room temperature corresponding to 210 cm 1 ) 
the higher levels of ground-term 3H are only negligibly populated, 
and all the narrow absorption bands must be due to transitions 
from iHi.

It appears from Table 2 that the bands of oxalato-complex 
are displaced on the average 400 cm-1 towards lower wave 
numbers as compared with the aquo ion spectrum. Presumably
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Table 2. The uranium (IV) bands observed.

Band 
group no.

Wave numbers of maxima in cm 1 
(shoulders in parenthesis) Area = \ed v

U or44 Uaqx 1

Í 6550 11..................... 1 (6900) J <r"- ,5)

f (8750) > 5-10* cm 1••••••• I 9300 9200 1
.. ! 11200 11000 I 1.3.

1 12000 11500 Í

14850
4..................... 15350 15000 4.8 •

(15850) (15800)
5...................... ! 18200 17800 !

1 (18350) J
I 20150 19750

6..................... Í 20500 20300 3.6 •
1 (21300) (21000)

1 (23000) I 1 -/..................... '
I 23350 22750 1

8.......................... 40800 ~ 1 •

Hie lowest of the levels into which 3H4 is split by the crystal field 
from the ligands is some hundred cm 1 lower in the aquo ion 
than in the oxalato complex (cf. the theory of Bethe19). The 
symmetry of the uranium (IV) complexes discussed here seems 
to be cubic or nearly cubic. Marchi and McReynolds20 maintain 
that the tetraoxalato complex most probably has the Archimedean 
anti-prism con figurât ion.

All (he uranium (IV) bands have relatively large half widths 
of about four hundred cm’1 (as in Pr ! ), while no observed 
band is very narrow, as e. g. the band at 427 m/z of Nd' t+. 
Thick layers of concentrated uranium (IV) solutions transmit 
light in such narrow parts of the visible spectrum between the 
absorption bands that they can be used for optical filters in some 
cases.
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Identification of the Uranium (IV) Bands.

In a following section the arguments will be given for the 
electron configuration in uranium (IV) complexes being [Em] 5f2. 
Under Ibis assumption the theoretical predictions are compared 
with the observed spectra: One of the most certain identifications 
of the band groups in Table 2 is the very strong group 2 as aHi 
3H6. According to Table 1, the energy difference is 11 £ besides 
some perturbation energy, which must partially cancel. Thus the 
Lande factor £ is nearly 800 cm '. This is a very reasonable 
value if it is compared with other systems with two effective /'- 
electrons (see ref. 7, 4, 5 and 40):

La  £ ~ 140 cm 1
Pr+ + +............... 400
Tm+ + +.............. —1400
77i + +.................. 520

£ is formally proportional9 to the fourth power of the effective 
nuclear charge acting on the electrons considered.

'Phis value of £ corresponds to a certain amount of (./,./) 
coupling, equivalent to fairly large values of the perturbation 
energy, but not so large as in the case of the thulium ion (which 
has a nearly closed shell and correspondingly inverted multiplets 
with a highly negative Lande factor). Il is predicted that the 
selection rule of S will be obeyed in some degree, giving higher 
intensities, inter alia to the triplet transitions, than to the singlets 
from the triplet ground-state. The intensities are presumably in
creasing with the value of but configuration interaction may 
cause peculiar intensity values.

The electrostatic interaction parameter F2 can next be deter
mined to 380 cm 1 from the identification of the ultraviolet band 
(no. 8 in 'fable 2) with 3/74—3P2. If the first column of 'fable 1 
is chosen, flic energy of this transition corresponds to

* 80.8 F2 + 7 £ + some perturbation energy ¡.

'fhe alternative possibility of representing 3/J2 by band No. 7 
would give a much more com pressedenergy scale with F2 only

♦ Good agreement is obtained, if Fe is large 10 cm-1). But then a band is 
masked by others in the visible part of the spectrum, presumably '/(i, and the 
other identifications are not altered much.
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about 180 cm“1. This would not agree well with F2 in 77» ,
which is8 208 cm-1, since F2 is roughly proportional to Z1, 
where Z is the external charge of the ion (cf. the discussion of 
the first transition group by Condon and Shobtley9). From 
Table 1 it follows that 3F2 and 3W5 must be placed at essentially 
smaller wave numbers than one is able to measure on the Beck
man I)U spectrophotometer. The bands of lower intensity than 
3/76, which were discovered in the infra-red by Dbeisch and 
Kallsciieueb1 ’ are presumably due to these transitions. The 
low band group 3 is due to 3F3 and the four other band groups 
in the visible, Nos. 4, 5, 6 and 7, can tentatively be assigned to 
the transitions from 3//t to 3F4, 1Z)2, XG4, and x/6, respectively. 
Then no observed band-group remains unidentified and pre
dicted bands are only missed at about 36000 cm 1 (3/J0) and 
38000 cm-1 (3Pi) in addition to the unobservable LS0 at 58000 
cm“ .

When the perturbation energies arc found from the deter
minantal equations given by Spedding,4 curious consequences 
are found if F + 3 £ is nearly equal to G, where F and G are the 
electrostatic interaction energies found from the Condon-Shortley 
theory (see Table 1) for the terms 3F and XG. The difference 
between two of the three roots of the equation for J = 4 will 
then be approximately 7.7 £ (in this case 6160 cm ') while the 
lowest root is placed 750 cm 1 below H — 6 £ by the perturbation. 
The former difference agrees reasonably well with the difference 
found between the two strong band groups Nos. 4 and 6, although 
the average wave number calculated is loo low.

The question which of the two highest levels with J = 4 is 
3F4 and which is XG'4 has no physical significance. The wave 
functions will be intermixed with nearly equal coefficients, and 
the triplet character transferred so much to both states that the 
intensity can be nearly equal. This is often the case, e. g., in 
the heavy atoms of the inert gases.21

This identification is supported by the shapes of the band 
groups, whose fine structure is due to the crystal field splitting 
of the excited state and the ground-state, 3774. According to the 
theory of Bethe19 these weak crystal field perturbations will only 
depend on J. The bands identified here as being due to transitions 
to states with J — 6 thus have very similar structures with a 
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satellite towards lower wave numbers. The two band groups 
with J = 4 have the complicated structure with three or more 
partial bands in the spectrum of uranium (IV) aquo ion (see 
fig. 1). The case of ./ — 3 has another structure.

The succession of 11)2 and 1G4 has been inverted in the 
identification, due to the fine structure. The weakest point is the 
position of lI6, which further has too small an intensity. But if 
is necessary to assume that it is the last baud before 3P. The 
energy of 1/6 seems also to be depressed8 in Th and is perhaps 
affected by configuration interactions.

It is remarkable that the Condon-Shortley theory, which has 
not met with very great success in dealing with the heavy atoms, 
is in so good agreement with the experimental data for the ura
nium (IV) spectrum. Table 3 gives the results with F2 = 380 cm-1, 
P4 = 76 cm ’, F6 = 0 cm 1 (which seems to be the best appro
ximation), C = 800 cm"1, and the perturbation energies cal
culated by the method of Spedding,4 as compared with the ob
served wave number of the centre of gravity of the band group 
in the aquo ion spectrum.

Table 3. Calculated and observed levels of U'\

Calculated Observed

3H6 4750 cm“1 __

3H6 9350 9200 cm“1
•F, 7700 6600 (ref. 15)
3f3 11800 11600
3Ft PGt) 12050 15400
>D, 19500 18250
*g4 m) 18700 20500
v. 29350 23200
sPo 35500 —
3Pi 37700 —
3I\ 40000 40800
1S0 58200 —

The average value of the absolute deviation | r()b.—vcalc | is 
thus 1800 cm" 1 for the 8 observed bands. The calculations of 
Spedding1 show the average deviation 440 cm-1 for the 10 bands 
of Pr' and of Bethe and Spedding5 1170 cm-1 for the 7 
observed bands of 7m+ ++.
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The Other Actinide Elements.

The suggestion that uranium is an ordinary transition element 
without /’-electrons was rejected by Kiess, Humphreys and Laun,22 
who proved that the ground-state is 5TG from the configuration 
[Em] of3 6<7 Is2. Schuurmans23 demonstrated that the lowest 
configuration of U4 is [Em] 5 f3 Is2 closely followed by [E//i] 
5f36dls. Since in the transition groups the electrons with the 
highest principal quantum numbers are removable by ionization, 
it is almost certain that the fourth ionization state of uranium 
has the configuration [Em] of2. There is no contradiction in the 
fact*  that [Em] 5/’6c? has lower energy (15000 cm *)  in 77i4 
than [Em]5f2, since /’-electrons have steeply decreasing energies 
with increasing atomic number in the lanthanide and actinide 
elements.

* The configuration [Em] 6d2 seems41 to be placed 810 cm-1 below [.Em] 5/ 6d 
in Th+ + .

Experimentally, attention has been concentrated on the mag
netic properties. Hutchinson and Elliot24 and Howland and 
Calvin20 concluded that all the ions of the elements with atomic 
numbers from 92 to 95 have the general configuration [Em] 5fn. 
But some evidence for [Em] 6g?2 has been found in the case of 
solid uranium (IV) compounds. While of2 in (L, S') coupling 
should give a magnetic moment of 3.58 Bohr magnetons and 
in (/,j) coupling 3.84 B.m., 6c?2 is presumed to have its orbital 
moment quenched and to give the value 2.83 B.m. calculated 
from spin moment only. Dawson2*’ measured solid solutions of 
UFt in ThFi and (analogous to Trzebiatowski and Selwood2') 
U()2 in ThO2, and found decreasing magnetic moment by dilution 
with the diamagnetic thorium compounds, varying from 3.3 to 
2.9 B.m. The 5/’-electrons are not so effectively shielded in the 
actinides as the 4/’-electrons in the lanthanides. If the levels of 
3/74 split by crystal fields are not equally populated, magnetic 
effects may be produced. According to Nyholm,28 the magnetic 
moment of sodium plutonyl acetate measured by Dawson29 is 
not a definite proof of the configuration [Em] 6(/2 of PuO2

Spectroscopic evidence is strongly against the possibility of 
[Em] Qd2 for U" 4, which would give very broad bands as the 
ordinary transition group complexes. The green UE4 according 
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to Ephraim and Mezener14 has a reflection spectrum composed 
of bands at nearly same places as the aquo ion. An interesting 
case is the brown UO2, which has not the usual colour of Í7+4 
(compare e. g. the lanthanide sesquioxides which are coloured 
by the trivalent lanthanide ions alone). Recently, Gruen30 has 
studied solid solutions of UO2 in Th()2. While pure UO2 has a 
steeply increasing absorption below 600 m/z besides an absorption 
band at 670 m/z, the mixtures with much ThO2 have narrow 
bands (as other U+4 salts have) at 655, 600, 540, and 515 m/z, 
while the strong absorption begins here at 460 m/z. The molecular 
spectrum below 460 m/z may be due to admixtures of higher 
oxidation states, analogous to the change of colour of CeO2 by 
the presence of very small impurities. Gruen30 mentions the 
analogous change of absorption spectrum and electrical con
ductivity of olive-green nickel (II) oxide by admittance of some 
IO-4 molar excess of oxygen.

The absorption spectra of the actinide ions can further illu
strate the problems discussed in Seaborg’s famous paper.31 The 
spectrum of uranium (IV) ions seems not only to indicate that 
the 5/’-electrons have lower energy than the 6 ^/-electrons, but also 
that there must be a considerable energy difference. If this were 
not the case, transitions 5/'2—5f&d should occur in the spectrum. 
These would correspond to very strong bands, since the two 
combining terms are even and odd in contrast to the usual bands, 
which arc forbidden as free dipole radiation qua transitions be
tween even terms. The strong bands are known in the ultraviolet 
cerium (III)32 solutions, which must be caused by [AT] 4/-*  
[AT] 5d or [AT] 6s. They are very broad and have molar extinction 
coefficients near 500. The ultraviolet part of the uranium (IV) 
spectrum shows no sign of such bands above the steep absorption 
limit at ~ 230 m/z. As pointed out by Seaborg,31 the ordinary 
bands of the actinide ions are about ten times intenser than those 
of the lanthanide ions,32 which is in good agreement with the 
present results. No molecular spectrum is observed in the aquo 
uranium (IV) ion either. This is presumably due to the low 
electron affinity of U+\ which shows no great tendency to transfer 
electrons from the ligands.33

Uranium (HI) salts do not exhibit very strong absorption 
bands, at least over 400 m/z (from preliminary measurements in 
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10 M HCl after reduction with zinc amalgam). The terms origi
nating from [Em] Sf2 &d are thus probably considerable higher 
than the terms from [Em] 5f3 which produce the many bands 
in the visible spectrum.

Two other systems with two electrons outside the emanation 
shell are quinquevalent neptunium and sexavalent plutonium, 
best known as the oxo-complexes NpO^ and PuOt*.  These 
ions have each a very high, narrow band in the infra-red, and 
a large number of small bands with extinction coefficients near 
10 (see ref. 31, p. 1042 and pp. 560, 592, respectively). The high 
bands at 983 m/z in neptunium (V) and 833 m/z in plutonium 
(VI) can tentatively be identified as 3Ht—3H6 giving the Lande 
factor £ the probable values 900 and 1000 cm“1. The number 
of bands in neptunium (V) in the visible is remarkably large. 
Measurements by Hindman, Magnusson and La Chapelle (ref. 
31, p. 1042) give the wave numbers v and maximum extinction 
coefficients £ for 1 M HCl solutions:

No. V £ No. V £

1 9759 cm“1 3.5 7 16180 cm-1 23.5
2 10170 325 8 16610 4.5
3 10900 2.8 9 16830 5.5
4 13000 5 (broad) 10 21000 8.5
5 14530 5.2 11 23250 8.5
6 15900 9.0 12 27400 7

The group Nos. 6—9 resemble the 3/74—3F4 (1G4) and the 
three last bands the singlet transitions for 1/)2, XG4 (3F4), and 
1/c of the uranium (IV) ion. But the vibrational structure31 
imparted by the two firmly bound oxygen atoms may disturb 
the identification. The electrostatic interaction F2 seems to be 
slightly larger than in Í7 1 *,  as is also to be expected if the hypo
thesis of [£zn] 5/'2 is correct. Recently, Gruen and Hutchinson3’ 
have given magnetochemical evidence for this electron configura
tion of neptunium (V). The values of £ are larger inter alia for 
the actinide ions than for the lanthanide ions, as also found from 
magnetic properties of americium (III).2’’

Uranium (V) in UO-¿ has no absorption bands in the range 
360—1000 m/z3b. The configuration [Em] 5f would only show one

7band in the lar infra-red, since ~ £ is so small an energy. In 
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contrast to this, systems such as [Xe] 4/13 in ytterbium (III) have 
so large a (negative) Lande factor that the internal doublet splitting 
of 2F is 10200 cm ’. Boussières and Haissinsky3' give no 
absorption spectrum of their protactinium (IV) compounds. 
Neptunium (VI) in Np()-¿ has a larger number of low bands34 
which, analogous to the uranyl ion spectrum, are not yet explained 
by the atomic spectra.*

The absorption spectra discussed here show that the 5/’- 
electrons seem to have considerably lower energy than the 6 c/- 
electrons, when two electrons are considered in atoms with atomic 
numbers of at least 92. It is hoped to investigate later the systems 
with more 5/-electrons, e. g. U 1 1 , encouraged by the success 
of the Condon-Shortley theory.9 The actinide hypothesis of 
Seaborg31 seems to be valid to a higher degree than is often 
concluded from chemical evidence. The higher oxidation states 
found in the actinide elements are only a continued development 
of the tendency, also found in cerium and praseodymium in the 
beginning of the lanthanide series.

Acknowledgment.
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* If the electron transfer theory of molecular spectra can be applied to the 
uranyl ion, the bands ~ 22000 cm 1 of low intensity are perhaps due to transitions 
of less probability to /-states in contrast to the high bands ~45000 cm-1 caused 
by d-states.
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Additional Note.

Recently, two papers have been published on the [Emjöf2- 
systems of chemical interest. Sancier and Freed38 have directly 
compared the reflection spectra of anhydrous PrCl3 and UCl^. 
While the experimental results of these authors are very valuable 
(e. g. the continuous absorption39 below 400 m/z of UCl¿), the 
identification of most of the visible bands of Z/CV4 with 3//4—1/6 
does not seem convincing without further proof. For this purpose, 
solid salts of U ' 4 (and especially the chloride with the strongly 
split bands11) are not so useful as the aquo ion in solution. The 
crystal field in the liquid state is averaged over the contributions 
of low symmetry, while strong deviations from cubic symmetry 
can occur in the rigid crystal. The continuous absorption at 
300 m/z of UCI4 is presumably38 a molecular spectrum which can 
also be obtained in concentrated //CZ-solutions of uranium (IV).

Gruen40 calculates the spectra of Np()¿ and PuO^+ from 
given values of £ and the known terms of Th' ' 41, 12 after 
addition of about ten per cent. It might seem more reasonable 
to use this experimentally determined electrostatic interaction in 
the place of the Condon-Shortley parameters which only are a 
first-order approximation. But there is a possibility of transferring 
configuration interactions from Th to the heavier atoms which 
are not necessarily similar.

It may be inquired whether the electrostatic interaction is 
really proportional to Z-58 in the actinides1” and Z-34 in the 
lanthanides,” where Z is the atomic number. The strong increase 
of F2 from La to Pr * ' corresponds rather to proportionality 
to the external charge + 1, thus in this case Z-55. Also in the 
actinides evidence can be found for increasing electrostatic 
interaction: The isoelectronic species Np and Pu+4 ([Em] 
ö f4) have a nearly biunique correspondance between their ab
sorption bands:
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Np4 ++ (ref. 31, p. 1053) Pu + 4 (ref. 16)
V emax V £max

10000 cm"1 .............. 29 12200 cm-1.............. 21
11700 23 13700 ................ 14

3512700 46 15300 ................
15100 29 18100 ................ 14
16600 25 19800 ................ 11
i<st no 41 21300 ................ 54

On an average 19 per cent higher wave numbers are ob-
served among the [band maxima of Pit 1 4, as compared with
Np+3. This is of course partially due to the increased Laudé 
interval factor £, which also causes larger perturbations. But the 
electrostatic interaction seems definitely to have increased more 
than three per cent found from the strong-shielding theory. The 
deviation may be connected with the strong dependence of the 
ionic radius on the external charge.

If the Gruen hypothesis10 is applied to U *,  the identifications 
of the band-groups of Table 2 would be: No. 2 3H6, No. 3 un
certain, No. 4 most of 3P and 1G4, No. 5 perhaps 3PU No. 6 1Z6, 
No. 7 1Z)2, an(l No. 8 LSfl. Il is interesting to note that a very large 
C (over 1100 cm“1) also could explain some features of the 
observed spectrum: Band group No. 2 now being 3F4, No. 4 3H6 
and some 3P-levels, No. 6 1G4, and No. 8 \S0. But the primary 
hypothesis, the relatively low energy of 3P and high 1D, does not 
seem totally justifiable. As also given by Racah11 for Th ", it 
corresponds to a large value of F6 and relatively small value of F2.

Chemistry Department A,
Technical University of Denmark, Copenhagen.
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arious properties of the absorption spectra of the complexes
V of the first transition group elements have been discussed in 

the previous papers of this series.1-4 The basis of these con
siderations was the crystal-field theory, a theory in which the 
assumption is made that the main properties of e. g. a complex, 
are determined by the electrical field originating from the ligands. 
It was shown that a simple perturbation treatment could account 
quantitatively for the absorption bands in the copper (II) com
plexes.

'fhe present paper is intended to give an account of the 
information that may be obtained about the Ni(II)-complexes 
when using the crystal field theory. For this purpose the necessary 
quantitative results for eight equivalent d-electrons (or two 
positrons) will be derived. The derivation will be carried out in 
the most straightforward manner on the analogy of the method 
in ref. 2. The formulae derived will be utilized in the numerical 
calculations of the spectra of the simple para- and diamagnetic 
Ni(II)-ammines. Further it is shown that a strong hybridization 
using 3d orbitals seems out of question in the discussed octahedral 
Ni(H)-complexes.

General Theory.

The electronic configuration of the free Ni(II) ion is Is2 2s2 
2p6 3.S-2 3p6 3d8, the ground state is a 3F level. The lowest excited 
states are: 1I) 3P 1G 1S. Unfortunately only the 3P term value is 
known with accuracy.5 It is found at 17000 cm-1. The “normal” 
bands with a molar extinction coefficient e ~ 10 are due to 
transitions between states with the same multiplicity.2’ 4 There
fore it is the splittings of the 3F and 3P terms which determine
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the spectra of the paramagnetic complexes, and the splittings of 
the 1Z), 1G and terms which determine the spectra of the dia
magnetic Ni(Il) complexes.

We assume that the perturbing field originating from the 
ligands is so strong that the (L — S) coupling can be neglected. 
The value of L and the symmetry of the field then determine 
the number of states into which a given term splits up. We shall 
use the hole-formalism2 and treat the eight 3d electrons as 
equivalent to two 3d positrons. The unperturbed wave functions 
^¡..M angular momentum L and the magnetic quantum 
number M — — L, — L + 1 . . . L are constructed by com
binations of the single particle wave functions y>(l) and ip (2) 
of the two 3d positrons.

The wave functions M for the 3F state can be found by 
the method of Condon and Shortley.6 Leaving out the spin
functions we find:

^3.2 = l/^(V’2(l)V’o(2)-V>,(l)V>2(2))

= l/-^ (V2(1)V'-i(2)-V’-1(1) V2<2))

+ I/ 1 (Vi(l) Vo(2) — Vo(! ) Vi(2))

SPj.o = |/T(r,(l)r_,(2)-r_,(l)y,(2))

+ l/? (ViC1) V-i(2) — V-i(l) Vi(2))

¥'3-1 = |/iVv’,(1)’’-2(2)_¥’-a(1),’i(2))
+ |/l(v>„(l)v>-1(2)-v>.,(t) v»(2)) 

V':, 2 = |/i(V’.(l)V’-2(2)-V-2(l)Vo(2)) 

ï'3-3 = |/| T-M - ^-2(1) W>(2))

(I)
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The indices on the 3 c/ single-particle wave functions refer to 
the magnetic quantum numbers.

The perturbation term of the Hamiltonion is the same as the 
one used in ref. 2, equation (3)

H{1) = H(1)(l) + H(1)(2)

• x »
W<"(1) = _W(m) 1 V VJ.’ (0)

The différent terms Hy\\r = the
secular equation now have to be evaluated. On the analogy of 
the argument in ref. 2, it is seen that in the single electron integrals 
n must be 4, 2, and 0. Hy\\r is then different from zero only for 
m — 4, 2 and 0, which means that M — M’ must be even.

The secular equation is then:

By means of the symmetry conditions of the matrix and by 
row and column operations we get the four equations:

The different are now evaluated. We get e. g. for H$:
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Hw = jj| |/¡1(j(v>2l,V'C2 — V'-aV'a2’) + |/j(¥’il,V'<2i — ’f"’Vi~’ 

(/f<1>(l)+H<1>(2))dr1dr2 = | j¡ | fc|2H(1,(l) dr, +1 jj | |2Ä(”(1) dr,.

The question of obtaining the solutions of a two particle
problem has then been reduced to the evaluation of the single
particle integrals. These integrals are tabulated in ref. 2, 

o
equation (9). Leaving out the common factor we 8et;

H«’,1 = D(0,/0 r 2 3i 4 22B«-35B>-28B‘l + Cd'S + j“g) 2B° 1 35 b2-7b4

Similarly we obtain:

(4)

The first order perturbation energies of the Ni (I I) complex 
are obtained by inserting (4) into (3) and solving the equations 
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with respect to E^\ Because of the complexity of the final for
mulae for the general case, these will not be written out. Cal
culations for some definite cases are given below.

From the 3P term we gel analogously:

(5)

The secular equation is

hAH^-E^ 0

n(W 00

Hff-E™0
i. e.

/XD _ M(1)
(6)

E(1) = Ilff ± H}1?!,

where

/./(i)77 oo

= B(01¿u)

3
10

2
7 «2
5Bo

HA

vA1 ’ 42)

^i.o

(1) (2) I '*

w)!1

VU Y-2
2

I 10

^2 ’ V’-?

+ 7 B25

•Bi-i

- ^0 1(, ^2 H- F /ffí) - Hfí

HL\\

lAs

1
10

w.(Dw/2)_ 
ro r-i

The Hexa-Coordinated Ni (Il)-Complexes.

The energy levels of Ni (I I) complexes, with six equal point 
dipoles placed in a regular octahedron around the cation, are 
obtained from (3) and (6):

The 3F state splits up into three levels:
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3F

8
45

12Bo + ^B4

/z[12B0 + 2B4]

A-

A-

A-

'The /’ notation is the nomenclature of Bethe.7

(7)

cubic field.

Fig. 1.
The term scheme of the paramagnetic octahedral Ni (I I) complexes with cubic 

symmetry.

For the 3P state, which does not split up in a cubic crystal
field, we get:

The energy levels for one cZ-positron is2:

E. = +
(8)

A combination 
and Ilse8 gives

of (8) and (7) in the notation of Hartmann
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(9)

(10)

Between these four levels three transitions from the ground state 
*FI\ are possible. (See Fig. 1). The frequencies of the three 
absorption bands are:

= (F2 — Fi) cm

*2 = |(Fa —F^cm-1

r3 = 17000 +y (F2 — K^c.m"1.

(H)

From these is obtained the simple rule that r2/vi = 1.8.
The spectra of Niaq64 and Nien3' ' are given in Fig. 2. 

As abscissa the wave number v is taken and as ordinate the 
molar extinction coefficient e. Inserting (F2— Fx)a(/ = 7600 cm1 
and (E2 — Fj)cn = 10500 cm 1 into (11), we find the absorption 
maxima given in 'fable 1.

Table 1.
Comparison of experimental and calculated absorption maxima. 

Wave numbers in cm~1.

Ni(H2O)6+ + Niens+ +

obs. calc. obs. calc.

r3 . . . 25300 26000 29000 29500
r2 ... 14000 13700 18350 18900
V*  . . . 8000 7600 11200 105001
ra/>i.................................. 1.75 1.80 1.64 1.80
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The absorption spectra of nickelethylenediamine complexes in aqueous solutions 
at 25° C. Curve (0): Niaq6+ Curve (1) Nienaq6^ Curve(2) Nien2aq2 Curve 
(3) Nien3+ “ Solutions of the composition: Cy/iNO,), = 0.05A7, C’KC1 =0.15 Af» 
C/7N0 ~ A/ with varying concentrations of ethylenediamine were measured 
on a Beckman D. U. Curve (0) is obtained from solutions with Cejl < 0.05. Curve 
(3) from solutions with Cen < 0.30. For solutions with intermediate ethylen
ediamine concentrations curves (1) and (2) are computed by means of the method 
of Bjerrum.13 The consecutive constants were determined to be: log Kx — 7.17, 

log /<2 = 6.07 and log A's — 4.27.

In Fig. 2 it is seen that the second band v2 in the spectrum 
of Niaq6 is not symmetrical. A closer analysis3 shows that it 
is actually composed of two adjacent bands with a /l r ~ 2000cm-1. 
A slightly tetragonal field may produce such an effect. However, 
a tetragonal field would also turn v3 into a double band, which 
has not been observed. The second band in the spectrum of 
Nien3! ' is seen to be Gaussian-shaped. Therefore, a possible 
explanation of the double band in the spectrum of Niaq6! may 
rather be that the splitting due to the (L— S) coupling in the 3F 
state5 (~ 2200 cm’1) is not totally quenched by the weak water 
ligand field. This is possibly the case for the stronger field pro
duced by the ethylenediamine.

The formulae (9) and (10) can also be applied to the spectrum 
of V aq6+ . The energy levels of the 3F state are here placed 
in the opposite order of that in the hexaaquo Ni(II) complex, 
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and the 3P slate is situated at 13200 ein“1. Experiments9 show 
that this complex has two bands placed in the visible region of 
the spectrum, the first at 17200 cm-1, the second al 25000 cm-1, 
so that v2/vl = 1.46. It seems improbable that the bands can be 
due to transitions between the 3F levels only, since the ratio 
in this case would be 2.251’8 (cf. (11)). On the other hand, if we 
assume that the term scheme is that given by Orgel,10 the bands 
are due to: ZFI\-+ 3FT5 and 37?F4-*  3P l\, i. e. v2/v1 = 1.56. This 
predicts a third band in Vaq6++ placed al 37000 cm-1 ~ 270 m/z 
and due to 3FF4—> 3FF2.

Mixed Ni (II) Complexes.

The complexes Nienaq/ ' and cis-Nien2aq2++ have both the
same formal configuration, i. e. two dipoles /z2 placed in a cis
position to each other. Assuming all distances to be equal, the 
energy levels for the 3F state [leaving out the factor pj is:

2(13)) — Pl

5(14)) — Pl

(ground level)4 2
8B0 + -B4 + p2 4 7?o+-774

+ P2

r 1 1 1877o + -P4 + P2 4 77o--774

(7 5(15)) — Pi 4 770+¿B2
35

H K/2)) — Pi

(B4)2

+ P2

4B0+~Ba£(A(15)) = Pi

1
2

+ P2

+ (pi+p2)2, A (^4)2

(12)

and for the 3P term:
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E (^4(Í2)) — Zh
4 Bo + I B2

E (J 4(i5)) — Z^l

+ ^2

1 r 1
8 Ba -j- — B2a + F2 4Bo-£B2

0

(13)

The formulae for the levels of the trans-Nien2aq2 1 complex, 
in which the two water dipoles /li2 are placed in trans-position to 
each other, is for the 3F state:

(^2(i3)) — Zh
4 9

3 + 4 Bo 4- - B4

E (J 5(Z 4)) — Fl
IßBo-iß,
L 3

+ ^2 4B0 + |b4

(ground level)

E — /ii «bo+35«2
1 2 4
7B‘ + Fz 4B,_35B,_21 B*

E (^4(i 5)) — Fl

1
2

fB^I'+^îaA)2
8 4

4B0+-B2-7B4

1 «T + í’rtW2

E (^4(/2)) — Fl
r « 3 '
8B0- —B2-yB4 T F2

8 Bo + 35 B2 — - B4 + F2

(14)

and for the 3P state:

tB.-U, .
5

4 «„ +1 b2E (^4(/5)) — Fl 8B0~Ib2
0

+ F2

E (^4(Z2)) — Fl
8B0+^B2

a H- F 2

For the numerical evaluation we insert all the distances R 
equal to 2.0 Å (see ref. 1, 11 and 14) and Z = 7.20 according 

to Slater,12 i. e. x = -3.78 = 9.1. From Table 3 in ref. 2
o
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^2/^4 = 2.26. Further, we assume that the values of the dipole
i moments are the same both in the “mixed” and in the “unmixed”

complexes. Then

The results of the calculation are shown in Table 2. The 
observed absorption spectra of Nienaq.j + and Nien2aq2+ are 
shown in Fig. 2 ; the maxima of the bands are tabulated in 
Table 3.

Calculated absorption maxima. Wane lengths in m p.
Table 2.

Nienaq + + cis-Nien., aqT + trans Nien9 aq+ +

1230 1150 1140
1100 1100 950
650 590 580
640 580 570
360 360 380
350 330 330

Table 3.

Experimentally found absorption maxima. Wave lengths in m p.

Nienaq + + Nien2aq+ +

980 900, 1000
640 550, 570
370 340

The calculated absorption maxima are nearly identical with 
those found by experiments. However, it is only in a few cases 
that the adjacent bands can be distinguished from one another 
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on the measured absorption curves. It is seen that the spectra 
of the cis- and trans-Nien2aq2 + complexes are nearly equal.

The spectra of the [Ni (NH3)n(H2O)6_n] + + complexes can be 
treated analogously. Taking (E2— Ej)nh¡ = 10100 cm-1, e. g. 
the band of Nickel monoaquo pentammine, which Bjerrum12 
found to have a maximum at 17200 cm-1, is placed at 17300cm-1. 
It is instructive to compare the absorption curves in Fig. 13, ref. 
13, of the nickel ammines with the absorption curves in Fig. 2 
of the nickel ethylenediamine complexes. It is observed that the 
spectra of the [Ni (NH3)2 (H2O)4] + + and [Ni (NH3)4 (H2O)2]++ 
complexes show a slight displacement towards the red as com
pared with the corresponding ethylenediamine complexes. This 
is also to be expected, as (E2— E1)NI¡t — 10100 cm-1 is slightly 
lower than (E2— E^)en = 10500 cm-1.

The dipole moments for the distance 2.0 Å and for Z = 7.20 
are calculated to be:

= 3.45 Debye 
Enii, — 4.55 —
Een =4.74

Thus both the chemical evidence, as shown by Bjerrum,13 
and the model developed here seem to verify that the hexaco
ordinated Ni(II) complexes are built very nearly as regular 
octahedrons.

The Four-Coordinated Ni (II) Complexes.

It has been shown by X-ray examinations that the diamag
netic four-coordinated Ni(II) complexes have a square-planar 
configuration. (For a review, see ref. 14). According to the mag
netic evidence the ground level must be a singlet.

In order to investigate which state could possibly be the 
ground state we shall first consider the splittings of the levels 
in a distorted octahedron. The lowest level of the term in a 
distorted octahedron (1f?/11(z2) in the nomenclature of Betiie7) is:

E* 1’ = 7»/Vl [8 «0 + 71 «2 + 7, B.] + 7« /V2 [4 «0 - 7, I>2 + 721 Bl 
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This is the level which splits up the most in a tetragonal field, 
and as none of the other states has this symmetry, the level can 
cross these. Taking B2/Bi = 2.26 and p2 = (), we get for the 
square-planar complex

E(1) = 8/«r2ft [8B„ + 2.72Ba],

For relatively strong ligand fields this level can be the ground 
state, and the complex thus diamagnetic. However, paramagnetic

square-planar field

Fig 3.
big. 3. The term splittings in the square-planar configuration. The ground level 

is changed from a triplet to a singlet at the point À.

complexes with square-planar configuration seem also to be 
possible (Fig. 3).

fhe 1G stale is estimated by Condon and Shortley6 to be 
placed at ~ 22000 cm-1, and a reasonable value of the splitting 
of the 3F level in a square-planar field is ~ 12000 cm-1. If 
1^(A(/2>) is the ground state, 8/45/* 2/z • 2.72 B4 > 34000 cm-1,
i. e. 8/45 f2p Bi > 12500 cm-1, which in fact corresponds to a 
rather strong crystal-field.

Even if our calculations are only valid for small ligand
fields, we can e. g. try to calculate the first absorption band of 
Nistien2 '. (stien = C, C-di(phenyl)ethylenediamine). If we use 
8/45 f2P Bt = 13000 cm-1, this band (^4(/2)) (^3(/i)) 1S
placed at 550 nip. Experiments show only one band situated
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at 450 mfi. Another possibility is that second order eiTects have 
already depressed the lI) level beneath the 1G (/4(t2))
level. It is known that in strong crystal fields this level is placed 
below the former.

The splittings in a regular tetrahedron are similar, but the
inverse of the splittings in a regular octahedron.17 It turns out 
that the coefficients to obtained in the octahedral case are to 
be multiplied by the factor — 4/9, e. g. for the 3 F state: (the

factor 8
45 f2/j, is omitted)

XB„= 2i,

8 Bo — 4/27 B4 = Ex + E2

8 Bo + 4/9 B4 = V5 {Ex + 9 E2).

1\

In the tetrahedral configuration the ground state is a triplet and 
the complex is thus paramagnetic. However, the absorption 
spectra of paramagnetic complexes assumed to have a tetrahedral 
configuration14 do not seem to fit these formulae.

General Remarks.

As demonstrated in the above sections the simple crystal
field theory is able to account for most of the experimental 
material. Thus it seems unlikely that the overlap-integrals be
tween the ligands and the metal-ion can be of much importance. 
This seems to be in accordance with recent calculations by Craig, 
Maccoll, Nyholm, Orgel and Sutton.15 The hybridization 
3d24s4p3 would produce two 4cZ electrons, predicting a level 
order inversed to the one found and with a ratio v2/vi — 2.25 
(cf. formula (9)). However, the actual ratio v2/vi = 1*64  of the 
Nien;(+ bands is, as we have seen, in fair agreement with 
the picture of an unchanged electronic configuration of the 
metal ion.

Van Vleck16 pointed out that complexes are held together 
more by polarization forces than by true valence forces. This 
seems to be true for the Ni (I I) complexes discussed here.
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In later publications the theory will be extended to the simpler 
cobalt and chromium complexes and to their poly-nuclear 
compounds.

I am much indebted to Professor J. Bjerrum for his great 
interest in my work, and for many valuable suggestions. My 
thanks are further due to Mr. Klixbüll Jorgensen for interesting 
discussions.

Chemistry Department A,
Technical University of Denmark, Copenhagen.
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I. Introduction.

The systematic occurrence of rotational spectra in strongly 
deformed nuclei implies many simple relations within the 
decay schemes of these nuclei. The great regularity in the pro

perties of these states makes it possible to predict with con
siderable accuracy their energies and sequence of spins1. More
over, the close relationship between the wave functions of the 
different states in a rotational sequence implies that the relative 
strengths of the transitions from a given nuclear state to the 
various members of a rotational family are governed by simple 
rules. In many cases, one obtains general quantitative relation
ships similar to the intensity rules for the fine structure and 
hyperfine structure of atomic spectra. These relationships may 
often be a valuable tool in the classification of decay schemes.

We shall here consider the intensity rules that apply to ß- and 
/-transitions in the deformed nuclei2. The available empirical 
evidence appears to be consistent with these rules and thus to 
lend further support to the assumed coupling scheme for these 
nuclei.

II. Spectra of Strongly Deformed Nuclei.

For nuclei whose equilibrium shape deviates strongly from 
spherical symmetry, one can distinguish approximately between 
two essentially different modes of excitation, rotational and in
trinsic. The former is associated with a collective motion which

1 Bohr and Mottelson, 1953a, 1953b, 1953c (the latter to be referred to 
in the following as BM); Ford, 1953; Asaro and Perlman, 1953. For a recent 
discussion of the theory and summary of the empirical data on nuclear rotational 
states, cf. A. Bohr, 1954; Bohr and Mottelson, 1954; Newton, 1954.

2 Similar intensity rules governing transitions to the different members of 
a rotational sequence can also be given for the «-decay process (Bohr, Fröman, 
and Mottelson, 1955) and the stripping reaction (Satchler, 1955).

1*  
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affects only the orientation in space while preserving the internal 
structure of the nucleus; (he latter may be associated with the 
excitation of individual particles or with collective vibrations of 
the nuclear shape.

The rotational spectrum depends essentially on the nuclear 
equilibrium shape, and is especially simple for axially symme
tric nuclei. The rotational motion can then be characterized by

Fig. 1. Angular momentum quantum numbers for a strongly deformed nucleus. For 
strongly deformed nuclei possessing axial symmetry, the coupling scheme is 
characterized by the three constants of the motion: the total angular momentum, 
I, its projection, M, on an axis fixed in space (the z-axis in the figure), and its 

projection, K, on the nuclear symmetry axis, z'.

the quantum numbers I, K, M, representing the total angular 
momentum, its projection on the nuclear symmetry axis, and its 
projection on the space fixed axis, respectively (cf. Fig. 1).

The separation of the nuclear motion into rotational and 
intrinsic modes corresponds to the existence of approximate 
solutions of the nuclear wave equation of the simple product type 

= |/ (Pi)» ( 0

where ep represents the intrinsic structure characterized by K, 
and the additional set of quantum numbers, r. For some pur
poses, one may attempt to describe the intrinsic wave function 
in greater detail in terms of the binding states of the individual 
nucleons in the deformed field and the collective vibrations of 
the nuclear shape (cf. the quantum numbers Qp, Q, ng, and m, 
employed in BM; more detailed calculations of single particle 
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states in deformed potentials have been performed by Nilsson 
(1955) and by Gottfried (1955)). Since, however, the intensity 
rules discussed below are independent of the intrinsic nuclear 
structure, it suffices in the present context to characterize this 
structure by the unspecified set of quantum numbers, r.

The rotational wave functions 2)(0¿), depending on the 
Eulerian angles 0,- of the nuclear coordinate system, are the 
proper functions for the symmetric top normalized so as to give 
a unitary transformation from the space fixed to the nuclear 
coordinate system. Due to the reflection symmetry of the nuclear 
shape, the complete wave function must be symmetrized by adding 
the term obtained from (1) by a rotation of 180° about an axis 
perpendicular to the nuclear symmetry axis (cf. BM, eq. II. 15).

The states in a rotational band are characterized by the same 
intrinsic wave function (prK and are labeled by different values 
of I. In an odd-A nucleus, where K is a positive half integer 
number, I may take on the values

r rr rr , . rr , « all same parity as the II = K, K + \, K 2,.............................. 1 J > (2
intrinsic structure.

In an even-even nucleus, the ground state has K = 0 and the 
symmetrization of the wave function limits the rotational band to

I = 0, 2, 4, 6  even parity. (3)

In an odd-odd nucleus or in excited intrinsic states of even-even 
nuclei with K # 0, the rotational sequence is again given by (2).

The energies of the states in a rotational band arc given, 
apart from a constant, by the expression

£/ = {/(/ + O + a ( )Z 1/_(^+ 1/2) <5k,i/2}, (-1)

where the moment of inertia 3 depends on the nuclear deforma
tion and is thus expected to vary fairly smoothly with A, in
creasing as one moves away from closed shell configurations. 
The second term in (4), which occurs only for odd-A nuclei 
with K = 1/2, is associated with the symmetrization of (1). The 
parameter, a, can be expressed in terms of the properties of the 
intrinsic wave function (cf., c. g., Bohr and Mottelson, 1954, 
eq. 5 a).
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Rotational spectra of the type (4), characteristic of axially sym
metric nuclei, are found to occur systematically in certain regions 
of elements (especially for 155<A<185 and A> 225; for an 
example, cf. Fig. 2). The intensity rules discussed below thus 
apply particularly to these nuclei1.

The energies associated with the excitation of individual 
particles depend on the level spacings for particle motion in the 
deformed held which are on the average a few hundred keV 
for a heavy nucleus. Intrinsic excitations of a collective vibrational 
character are in general expected to have somewhat higher 
energies, of the order of one or a few MeV.

Although intrinsic particle excitations and rotational ex
citations may have comparable energies, the two types of ex
citations can be rather easily distinguished, partly on the basis 
of the regularities in spins and energies in a rotational band, 
and partly on the basis of their essentially different transition 
probabilities.

The /-transitions within a rotational family are of £2 and 
3/1 type (cf. (2) and (3)). The F 2 transition probabilities are 
strongly enhanced as compared with those corresponding to the 
transitions of a single proton; the enhancement which results 
from the collective nature of the nuclear quadrupole field in
creases with the nuclear deformation and is observed in some 
cases to exceed a factor of one hundred (Bohr and Mottelson, 
1953a, 1954; BM, Chapter VII). The Ml rotational transition 
probability is related to the static magnetic moment of the nucleus 
and is of the order of magnitude of estimates for single-particle 
transitions, since the gyromagnetic ratio for the collective motion 
is of the same order of magnitude as that for single-particle 
motion (BM, Chapter VII).

In contrast, the transition probabilities for ß- and /-tran
sitions between dillerent particle configurations are usually 
smaller than those corresponding to single-particle transitions 
in a fixed spherical potential. Thus, the observed 3/4 /-tran
sitions and the allowed ^-transitions are found to be retarded

1 Outside these regions of elements, other regularities in the nuclear spectra 
have been observed, also suggestive of collective excitations (Sciiarff-Goldhaber 
and Weneser, 1955; cf. also Heydenburg and Temmer, 1954a). The spectra 
observed, however, differ essentially from (3) and (4), and exhibit features 
characteristic of collective vibrations about a spherical equilibrium shape.
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by a factor (the unfavoured factor) in the range 10“1 to 10“2. 
Such a retardation may result partly from the modification of 
the individual-particle wave functions implied by the non- 
spherical potential, and partly from a collective adjustment of 
the nuclear shape (BM, Chapters VII and VIII). A further retarda-

(10,10-) ?
(0,0 + )

(0,6+)

5.5 h

£2

¿(keV)

1142.9
1065.3 (1120)

641.7 (650)

£2

(0,4 + ) 309.3 (311)

(0,2 + )
(0,0 + )

Fig. 2. Decay scheme for 5.5 h isomeric state in Hf1S0. The empirical data are taken 
from Mihelich, Scharff-Goldhaber, and McKeown (1954). The internal con
version and angular correlation data are consistent with the spins and multi
polarities shown in the figure. The states are labeled by the quantum numbers 
(K, 1 7l).

The observed excitation energies are listed in keV, and the values obtained 
from (3) and (4) with the moment of inertia adjusted to the first excited state 
are given in parenthesis. The small deviations from these calculated values are 
negative and have just the I2 (I + l)2 dependence expected from the rotation
vibration interaction (Bohr and Mottelson, 1954).

The experimental evidence regarding the multipolarity of the 5.5 h isomeric 
transition is not conclusive. The very high degree of K-forbiddenness of this tran
sition (cf. p. 17 below) implies that it should be many orders of magnitude slower 
than a single-particle transition of the same multipole order. While the observed 
lifetime may suggest an M3 or E4 classification on the basis of single-particle 
estimates, the expected retardation therefore suggests a lower multipole order. 
Thus, if the transition were M2, the retardation would amount to a factor of 
about IO-9, which seems not excessive.

tion may result if the transition involves configurations of more 
than one particle (Moszkowski, 1953).

The simple separation between intrinsic excitations and col
lective rotations is realized in the limit of large deformations, 
where the rotational motion is so slow that it does not disturb 
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the nucleonic configuration or distort the nuclear shape. With 
decreasing deformation, and increasing rotational frequency, the 
intrinsic nuclear structure is excited by the rotational motion, 
and the quantum numbers K, r are no longer exact constants of 
the motion. This implies a modification in the rotational spec
trum (4), which may often be described by a term proportional 
to I2 (7 + l)2, as is characteristic of the rotation-vibration in
teraction in molecules. The magnitude of this correction term 
provides a measure of the adequacy of the rotational description. 
In the regions of the especially well developed rotational spectra 
(155 < A < 185 and A> 225), these correction terms in the 
energy amount to one per cent or less for the lowest rotational 
excitations (cf. Fig. 2, and also Boiir and Mottelson, 1954, 
especially Fig. 6 and Table II). More specific perturbations, 
associated with the particle-rotation coupling, may occur if the 
particle structure possesses a low lying state, which is strongly 
excited by the rotational motion (cf. footnote on p. 16 below).

III. Classification of ß- and y-Transitions in Strongly 
Deformed Nuclei.

It is convenient to characterize ß- and y-transitions by their 
multipolarity, L, and their parity, re, representing the angular 
momentum and parity of the emitted radiation (cf., e. g., Rose, 
1954).

For y-transitions, this classification just corresponds to the 
usual classification in terms of electric and magnetic multipole 
orders (EL and ML). The parity is

l(-)L {mEL I ...
71 [(—)L + 1 for .1/L. f

For ^-transitions, the classification of the various transition 
operators in multipole orders is given in Table I. The number 
in parenthesis is the order of forbiddenness, which is often 
used in the analysis of /'/-values, but which may differ from the 
multipole order.
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The selection rules on L and n for a transition from a state 
with quantum numbers (ZQ, Z¿ 7q) to a state with (Ziy, If nß) are

| Z¿ — Zj = Zl Z < L < Ij + 1/ 7t = Tt^jtf (6)

I Kt — Kf \ = AK<L. (6 a)

While the selection rules involving Z and % are rigorous, that 
involving K depends on the adequacy of the wave function (1). 
Small deviations from the rotational wave functions, of the type 
discussed at the end of Section II, will relax this latter selection 
rule, which then acts to retard, rather than completely forbid 
the corresponding multipole transition. We shall refer to such 
transitions as A-forbidden and characterize the degree of this 
forbiddenness by the number v, where

r = zl A - L. G)

The consequences of Zi-forbiddenness are discussed further in 
Section V.

IV. Branching Ratios.

The strength of a nuclear ß- or /-transition of multipole 
order, L, between an initial state, i, and a final state, f, may be 
characterized by the reduced transition probability

B (L, Zf ~+If)=£\ <IiMi I (L, ft) I If Mf> 12, (8)
fl Mf

where 90i(L, //) is the //-component of the transition operator of 
multipole order L. For /-emission of frequency co, the transition 
probability per second is

T (9)

Similarly, the cross section for Coulomb excitation is simply 
proportional to B (L). For ^-transitions of a given multipole 
order, the /'¿-value is inversely proportional to the reduced 
transition probability for the corresponding multipole operator 
(cf. Table I).
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Table I.

Beta decay transition operators, classified according to multipole order, L, and 
parity, n.

The transition operators are written in the notation of Konopinski and 
Uhlenbegk (1941). The number in parenthesis gives the degree of forbiddenness.

n = + 71 = —

0 1 (0)
-> ->
o’ • r, ßys (1)

1
-> 
CT (0)

-> -> -> -> 
r, r X a, a (1)

2 R.., A.., T.. a u U (2) B..a (1)

3 B...y* (2) R..,, a..,, t...Ijk ’ ijk ’ ijk (3)

For transitions between two states which can be represented 
by pure wave functions of the type (1), it is convenient to express 
the multipole operators in the coordinate system fixed in the 
nucleus

(10)
V

where DJf (L, r) has the same form as DJI (L, v) but is a function 
of the nucleon coordinates in the primed coordinate system 
(cf. Fig. 1).

The reduced transition probability then takes the form

B (L ,/(-»//)= Z I <Ti A’< Ml IS ' (A > 0 k/ A'/ ¡I -V/> I2- (11) 
p, Mf V

The integration over the Eulerian angles, 0f, appearing in the 
matrix element (11) can be performed explicitly and only the term 
with V = Kt—Kf gives a non-vanishing contribution. The reduced 
transition probability can thus be written as a product of a 
geometrical factor, depending only on the angular momenta 
I, K, and L, and a factor involving integrations over the intrinsic 
wave function of the initial and final states and thus depending 
only on r, K, and L.

For transitions between two members of a rotational family, 
the intrinsic wave functions of initial and final states are the 
same, and the intrinsic part of the matrix element reduces to 
an expectation value. The absolute transition probabilities can 
then be directly expressed in terms of the intrinsic nuclear 
moments (cf. BM, § Vile. ii).
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In transitions involving a change of the intrinsic nuclear 
state, the absolute value of the matrix elements depends on more 
specific features of the intrinsic nuclear structure. However, 
when one compares the reduced transition probability for the 
emission of a given multipole radiation from a state, i, to different 
members of a rotational family, the factor involving 
the intrinsic wave functions is the same. One thus obtains a 
ratio which depends only on the geometrical factors and can 
be written

B (£./,-/,) <ItLKfKt-Kt IiLIfKf}*
<IfLKtKf-Kf

1 For collective E2 transitions within such a rotational sequence with K = 1/2, 
the quantity b vanishes.

where <^I¡ LKiv\I¡ LI^ is the vector addition coefficient for 
the addition of the angular momenta It and L to form the re
sultant 7) (cf., e.g., Condon and Siiortley, 1935). The relation
(12),  of course, also holds where the states i and f, f' belong 
to the same rotational family.

In special cases, where L > Kt + Kf, the symmetrization of 
(1) may imply that the transition matrix elements become a 
sum of two products of geometrical and intrinsic factors. The 
ratio of reduced transition probabilities can then be written in 
the form

=

QiLKiKi-Ki /, LI, K¡) + h (-)'/+ K/'<Z, LK¡, - K, - Kf IfLIf-KfbT2
If LI,. K¡> + b + Kl </,. LKf, - Kf-Kf { I Kj)

where b is a parameter depending on the intrinsic wave function 
(cf. the similar parameter a in (4)). When either Å) or Kt is 
zero, (13) reduces to (12) regardless of L. A case of interest in 
which the parameter b enters significantly in the transition 
probabilities is that of Ml y-radiation within a rotational sequence 
with K= 1/21.

The recent extensive use of the Coulomb excitation reaction 
for the study of nuclear rotational states has provided a number

(13)
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Table II.

1 The spin of Hf177 is given as 7/2, as indicated by the observed rotational 
level spacings and the observed relative intensities. Earlier spectroscopic evidence 
(Rasmussen 1935) had tentatively indicated a spin value 1/2 or 3/2.

Nucleus h El0+i El„ EC + 2-^/
B(E2; 70^/0 + 2) B(Ml;7o+2->7o+l) Refer

encesB(E2; Io+Io + 1) 7? (Ml; Io+ 1 -> Io)

45Rh103 1/2 295 357 1.8 (1.5) __ a)
47Ag107 1/2 320 415 1.7 (1.5) — a)
«vAg109 1/2 306 405 1.8 (1.5) — a)
MEu»3 5 2 84 195 (192) 0.4 (0.35) ~ 2 (1.45) b) c)
85Tb159 3/2 58 138 (139) 0.3 (0.56) — b)c)
87Ho^5 7/2 94 209 (209) 0.26 (0.26) ~ 2 (1.53) b) c)
71LU”® 7/2 114 248 (252) — ~ 1 (1.53) b)c)
72Hf177 (7/2)1 113 250 (251) 0.20 (0.26) — b) c) d)
73Tai«i 7/2 136 303 (304) 0.21 (0.26) — b) e) f)
7lW183 1/2 46 99 ~ 1 (1.5) c) f) g)
79Au197 3/2 277 555 (665) 2 (0.56) b) h) i)

a) Heydenburg and Temmer (1954).
b) Heydenburg and Temmer (1954a).
c) Huus et. al. (1955).
d) Marmier and Boehm (1955).
e) Huus and Zupancig (1953).
f) McClelland, Mark, and Goodman (1955).
g) Murray et al. (1955).
h) Cook, Class, and Eisinger (1954).
i) Goldburg and Williamson H954).

Relative transition intensities from Coulomb excitation data.
In the Coulomb excitation of odd-A nuclei, one strongly excites 

the two lowest members of the ground state rotational band, having 
spins Io + 1 and Io-\- 2, where Io is the ground state spin. The energies 
of the states so populated are given in columns three and four, and 
the value of E¡q + 2— Ejo calculated by means of (4) from the observed 
Ejo + -[ — Ejo is listed in parenthesis in column four. The nuclei with 
I0 = K=l/2 exhibit the effect of the second term in (4). From the 
observed cross sections for the excitation of the two states in question, 
one may obtain the ratio of the E2 reduced transition probabilities 
listed in column five; the theoretical ratio (12) is listed in parenthesis. 
The study of the radiative de-excitation has permitted in some cases 
an estimate of reduced M 1 transition probabilities; the observed ratios 
are listed in column six, together with the theoretical value (12) (in 
parenthesis). For a discussion of the derivation of the reduced transition 
probabilities from the Coulomb excitation cross section, cf. the forth
coming review article by Alder et al. (1955).
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(M+)

(72, <■)
(7z//z^

Fig. 3. Level scheme for Talsl. The figure illustrates the information on the level 
structure of Ta181 obtained from the analysis of the /3-decay of Hf181 (McGowan, 
1954) and of the Coulomb excitation (double arrows) (Huus and Zupancic, 1953; 
Huus and Bjerregård, 1953; Eisinger, Cook, and Class, 1954). These reactions 
appear to populate states belonging to three different rotational bands, and this 
is indicated by drawing members of the same bands (having same K and ri) above 
each other, while the different bands are displaced sideways. The excitation energies 
are listed in keV, and the states are labeled by the quantum numbers (/<, I ri). 
The absolute parity is uncertain, and the value relative to that of the ground 
state is given. The levels drawn dotted are not populated in these reactions, but 
their position is inferred from formulae (2) and (4). The spin assignments for the 
480 keV and 612 keV levels tentatively suggested here differ from those of 
McGowan (1954), but are consistent with the angular correlation and conversion 
data given in this reference and, in addition, seem more compatible with the 
long lifetime for the 612 keV y-transition which is here assigned the multipolarity 
M3, rather than Ml.

In this level scheme, one may compare in a number of cases relative transition 
probabilities to two different members of the ground state rotational band.

a) The relative cross sections for the population of the (7/2, 9/2 + ) and (7/2, 
11/2 + ) levels in the Coulomb excitation process depend on the ratio of the two 
E2 reduced transition probabilities, B (E2; 7/2, 7/2-► 7/2, 11/2) and B (E2; 7/2, 
7/2 -> 7/2, 9/2), which according to (12) should be 0.26. The observed value 
for this ratio is about 0.2.

b) The Ml transition probability in the (7/2, 11/2 + ) ->(7/2, 9/2 + ) transition 
can be determined from the data discussed in a), together with the observed 
branching ratio for this transition in competition with the (7/2, 11/2 + ) -> (7/2, 
7/2 + ) E2 cross-over transition. By means of (12) one can then calculate the Ml 
transition probability for the (7/2, 9/2 + ) >-(7/2, 7/2 + ) transition, and one finds 
that this transition should have an E2 intensity of 10-20 °/0. From the angular 
correlation data of McGowan (1954), interpreted in terms of the spin assignments 
given in the figure, one obtains an E2 admixture in this transition of about 7 °/0; 
attenuation effects due to quadrupole coupling may somewhat increase this value. 
The /\-shell internal conversion coefficient is also consistent with an E2 admixture 
of the order of 10 °/0.

A knowledge of the amount of E2 radiation in the (7/2, 11/2 + ) -> (7/2, 9/2 + ) 
transition would make possible a further test of the intensity rules, by comparison 
with the transitions discussed under a).

c) The relative strength of the E2 transitions from the 480 keV level with 
K — 5/2 to the two first members of the ground state rotational band give the



14 Nr. 9

ratio B (E2; 5/2, 5/2 -> 7/2, (£2; 5/2, 5/2 -> 7/2, 9/2). The value calculated
from (12) is 1.25 while the observed ratio is about 1.1, assuming the 480 keV tran
sition to be 85 °/'o E2 and 15 °/0 Ml, as indicated by the angular correlation data.

The large £2:111 ratio in the 480 keV transitions may be ascribed to a 
coupling between the two rotational bands, which results in a small admixture 
of (5/2, 7/2 + ) to the Ta ground state, with a consequent great enhancement of 
the E2 transitions. While in general such rotational admixtures may affect the 
intensity rules, in the present case of A K = 1 and E2 radiation, the rules are 
not affected, provided one assumes that the intrinsic quadrupole moment is about 
the same in the two rotational bands (cf. pp. 19 if.). From the observed lifetime of 
the 480 keV level one can estimate the squared amplitude of admixture to be 
about 10-3.

of tests of the intensity rules (12) as applied to the transitions within 
a rotational band. Some of the general features of the decay 
schemes studied in this manner are illustrated in Figs. 3 and 4, 
and a summary of the available data from this source is given 
in Table II. The intensity rule has also been tested by the evid
ence on the relative lifetimes of the 2 + and 4 + rotational states 
in ggRa228 as deduced from the relative attenuation of the a—y 
correlation associated with the two states (Falk-Vairant, Teillac, 
Valadas, and Benoist, 1954).

The intensity rules (12) applied to transitions involving a 
change in the intrinsic structure are illustrated by the /Fdecay 
branching ratios of the odd-odd nuclei 69Tm170 (cf. Fig. 5), 
45Rh106, and 47Ag106 (cf. Fig. 6), and by the /-transition branching 
ratios in the even-even nucleus 74\V182 (cf. Fig. 7).

V. Effect of Perturbations.

Although the evidence on rotational spectra suggests that in 
the regions of the strongly deformed nuclei the wave functions 
(1) give a good representation of the nuclear states, the expected 
small deviations from this description may sometimes be signi
ficant.

Such deviations may be described by a wave function of 
the form

where the expansion amplitudes 6T,K, can be estimated from the 
effect of the perturbation terms, representing the partial de
coupling of the rotational from the intrinsic motion (cf. A. Boiir, 
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1952, eq. 96). Thus, the decoupling of the last odd particle gives 
rise, in first order (I\ = K ±1), to terms in (14) with

er'K± i = P ----- <TÅ7 I —A/'Å')|T'Æ±1 />

= ~WË fAw/m/iA-H-l) <r KI A. =F ÿ„. | r' A' ± 1 >,
(15)

where AE = ErKI— is the energy difference between the 
unperturbed states. The x and y' axes are perpendicular to the 

intrinsic nuclear symmetry axis (cf. Fig. 1) and j is the angular 
momentum of the particle.

Fig. 4. Level scheme for Ag109. The figure illustrates the information on the level 
structure of Ag109 obtained from Coulomb excitation (Huus and Lundén, 1954; 
Heydenburg and Temmer, 1954). The notation is similar to that of Fig. 3.

The negative parity levels provide an example of a rotational series with 
K = 1/2, in which the second term in (4) gives rise to anomalous spacings. The 
decoupling parameter a deduced from the observed levels has the value 0.67.

The relative cross sections for the population of the (1/2, 3/2—) and (1/2, 
5/2—) levels in the Coulomb excitation yield the ratio B (E2; 1/2, 1/2 -> 1/2, 5/2): 
B(E2; 1/2, 1/2 -> 1/2, 3/2) = 1.8 to be compared with the value 1.50 obtained 
from (12).

The 88 keV level belongs to the well-known class of 7/2+ isomeric states 
found in this region of elements. It is populated in the Coulomb excitations by 
a weak Bl branch from the 400 keV level. The observed branching ratio from 
this level to the ground state and the isomeric state can be combined with the 
cross section for Coulomb excitation to yield a value for the reduced transition 
probability for the El y-ray of B(E1; 5/2 >7/2 + ) = 2x 10-32e2 cm2. This 
value is smaller by a factor of about 10® than the value corresponding to a 
single-particle El transition (cf., e.g., Blatt and Weisskopf, 1952, p. 627). The re
duction may be, at least partly, ascribed to the 7<-forbiddenness of the transition.

Similar level structures have been observed for Ag107 and Rh103 (Heydenburg 
and Temmer, 1954); cf. Table II.
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The intrinsic matrix element appearing in the final expression 
(15) is of similar type as those which enter in the probabilities 
for nuclear transitions involving a change in the particle con
figuration. While a quantitative evaluation is difficult, such 
matrix elements are known to involve unfavoured factors (cf. p. 7

Fig. 5. Bela decay of Tm170. The experimental data for the Tm170 decay are taken 
from Graham, Wolfson, and Bell (1952). The notation in the figure is the same 
as in Fig. 3. The 84 keV level in Yb170 can be identified as the first rotational 
excitation on the basis of its short lifetime.

The experimental ratio of 1.9 ± 0.2 for the //-values of the two branches of the 
//-decay is in good agreement with the value 2.0 obtained from (12), assuming Tm170 
to have I — 1 and the //-transitions to be of multipole order L = 1 (cf. Table I).

In the region of the well developed rotational spectra, similar branching 
ratios have been observed in the decays of Ho164 (Brown and Becker, 1954), 
Re186 (Metzger and Hill, 1951; Steffen, 1951; Koerts, 1954) and Np236 
(Passell, 1954). In two additional cases (Lu176 (Goldhaber and Hill, 1952) 
and Ta180 (Brown, Bendel, Shore, and Becker, 1951)), there is some evidence 
for an odd-odd nucleus of spin 1 which //-decays to the ground state and first 
excited state of the neighbouring even-even nucleus, but with an //-ratio ap
preciably smaller than the expected value of 2; in these cases, however, the 
assignments seem not to have been definitely established.

above) which may imply a rather small value for e (e2 ~ 10 1 to 
1(I-2) even in cases where A E is of the order of rotational energies1.

1 Note added in proof:
The recent high precision measurements on the W183 level structure (Murray, 

Snelgrove, Marmier, and DuMond, 1954; Murray, Boehm, Marmier, and 
DuMond, 1955) have revealed deviations from the rotational spectrum (4) of 
the magnitude of a few per cent. The observed deviations cannot be accounted 
for in terms of a rotation-vibration interaction and indicate a relatively large 
coupling to an excited particle configuration. The inclusion of a particle-rotation 
coupling of the type (15), acting between the ground state band and the first 
excited band, has made possible an interpretation of these effects (Kerman, 
1955). The squared amplitudes of the admixed states are found to be of the 
order of ten per cent and their unusually large magnitude in this case affects 
in an important way the transition intensities.
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Higher order terms involving | K—K' | > 1 will be appre
ciably smaller, decreasing rather rapidly with the change in K.

The admixed states in (14) have an especially important effect 
on the intensity rules if either the unperturbed matrix clement is 
very small (as is, for instance, often the case with low energy E 1 
radiation) or even vanishes (as for the Ä-forbidden transitions; cf. 
below), or if the admixed amplitude is associated with an especially 
large matrix element (cf. the rotational admixtures discussed below).

a) K-forbiddenness.
The above estimate of the deviations from the wave function 

(1) indicates that Æ-forbidden transitions (cf. p. 9) may be 
appreciably retarded, but that this retardation is usually not large 
enough to alter the predominant multipole order of a nuclear 
transition (cf., however, the /-transitions in W182 between the 
K = 2— and K = 0+ rotational bands (Fig. 7)). It will, however,

Fig. 6. Rotational branchings in the ß-decay of Rh106 and of Ag106. The notation in 
the figure is the same as used in Fig. 3. The experimental data for the Rh106 decay 
are taken from Alburger (1952) and for the Ag106 decay from Bendel, Shore, 
Brown, and Becker (1953), who besides the transitions shown have also found 
evidence for ^-transitions from Rh106 and electron capture transitions from Ag106 
to higher states in Pd106. We here only consider the branching between transitions 
to the ground state and the 512 keV first excited 2 + state. Assuming the quant
um numbers indicated in the figure, the ratio of //-values for the transitions 
to the first excited state and the ground state should be 2.0 (cf. (12)), which 
is in fairly good agreement with the measured ratios of about 2 for the Ag106 
decay and about 3 for the Rh106 decay. There is, however, evidence from the 
higher excited states in Pd106 that the coupling scheme may be rather different 
from that of Fig. 1 (cf. footnote on p. 6).

Dan. Mat. Fys.Medd. 29, no.9. 2
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Fig. 7. Level scheme for W182. The notation is the same as that used in Fig. 3. The 
experimental data, which are obtained from a study of the radiation following the 
ß-decay of Ta182, is taken from Boehm, Marmier, and DuMond (1954) (cf. also 
Miheligh, 1954; Fowler, Kruse, Keshishian, Klotz, and Mellor, 1954). 
Apart from the indicated levels, there is evidence for two very weakly populated 
states at energies of about 1255 keV and 1437 keV. Otherwise, the level scheme 
drawn above differs from that given by Boehm et. al. only in the spin assignments 
of the 1331 keV and 1554 keV levels; the assignments suggested here are, however, 
also in agreement with the data in this reference.

The level scheme is interpreted as involving primarily states associated with 
four rotational series. The first series, comprising the three lowest levels, is the 
systematically occurring K = 0 + ground state rotational band of even-even 
nuclei. (For lifetime and Coulomb excitation of the 100 keV level, cf. Sunyar, 
1954; Huus and Bjerregård, 1953; McClelland, Mark, and Goodman, 1954). 
The calculated energy of the 6-¡- member of this band includes a small correction 
for the rotation-vibration interaction, as deduced from the observed energies 
of the 2¿- and 4+ states.

The second series, beginning with the 1222 keV level, has K — 2-\- and a 
moment of inertia rather close to that of the ground state band, although a little 
smaller. The third series, beginning with the 1290 keV level, has = 2— and a 
moment of inertia again of the same order of magnitude as that of the ground 
state, but in this case somewhat larger. This larger moment is in agreement with 
a general tendency observed for configurations, as in odd-A nuclei, having particles 
in addition to those filled in pairs. (Cf. Bohr and Mottelson, 1954; Bohr, Fröman, 
and Mottelson, 1955). In this view, the somewhat smaller moment of inertia 
for the 2+ series might indicate an intrinsic excitation of collective vibrational 
type leaving the particles in a paired configuration (cf. further below).

The /Tdecay of Ta182 further populates a level at 1554 keV, which seems to 
be the lowest member of a fourth rotational band.

The measured y-intensities provide a number of tests of the intensity rules (12) :
a) The branching ratio of the 1222 keV level to the ground state and 100 keV 

levels yields B (E2; 2,2 -> 0,0) :B (E2; 2,2 -> 0,2) = 0.62, assuming pure E2 radia- 
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tions for both transitions. The ratio calculated from (12) is 0.70. The amount of Af 1 
radiation observed in these high energy transitions appears small, but is difficult to 
determine quantitatively. According to (12), the intensity of the 893 keV E2 
transition from the 1222 keV level to the 329 keV level, which has so far not been 
observed, should be 1.5 °/0 of the ground state transition.

b) The branching ratio of the transitions from the (2,3 + ) level to the 100 keV 
and 329 keV levels gives B (E2; 2,3-> 0,2):B (B2; 2,3-> 0,4) = 2.1. to be com
pared with the theoretical value 2.5.

The observation of rather pure E2 radiation in the A I — 1 transitions be
tween the K = 2+ and K = 0+ rotational bands may be understood in terms 
of the 7i-forbiddenness for Ml radiation. The K = 2-|- band may possibly 
represent vibrational excitations of the ground state; such an interpretation would 
account for the strength of these transitions, as reflected in the fact that the 
(2,3 + )-> (2,2 + ) rotational transition is too weak to be observed. A crucial test 
of the vibrational character of these levels would be provided by a determination 
of the cross section for Coulomb excitation of the (2,2+) level.

c) The ratio of the intensities of the Bl transitions from the (2,3—) level 
to the (2,3 + ) and (2,2 + ) levels is calculated from (12) and (9) to be 0.031:1. 
While the low energy transition has been detected, its weak intensity has so far 
prevented a quantitative determination of this branching ratio.

d) The assignment of quantum numbers in the figure also provides an inter
pretation of the observation that the Zl 7 = 0 and 1 transitions between the 
K = 2— and K = 0+ rotational bands appear to be mainly of M2 or B3 type, 
rather than Bl, which is K-forbidden.

Such a K-forbiddenness may also account for the fact that no //-transitions 
are observed directly to the members of the K = 0+ ground state rotational 
band.

lead to increased admixtures of higher multipole components, 
which may be especially significant in the so-called parity un
favoured transitions (/-transitions with % = (—yb + 1 anj 
//-transitions with 0 excepted)), where mixed
multipole transitions are most likely to occur.

An example of a highly K-forbidden transition (r = 8) where 
a large retardation factor is expected is provided by the 5.5 h iso
meric transition in Hf180 (cf. Fig. 2). Another such example is the 
//-decay of Lu176, where the high order of K-forbiddenness (v = 5 
or 6) suggests the interpretation of the observed log ft — 18.9 as 
a second forbidden transition with an unfavoured factor of the 
order of 10 '.

b) Rotational admixtures.
In the calculation of nuclear transition probabilities, small 

admixtures in the wave functions (1) may be significant, even 
where there is no K-forbiddenness, if the associated transition 
matrix element is large. Thus, the large transition matrix element
for 3/1 and E2 
implies that, in ;

radiation within a rotational family (cf. p. 6) 
a transition involving a change in the particle 

2*
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structure, special significance attaches to the admixtures to one 
of the combining states of a wave function belonging to the 
rotational family of the other. Especially for E2 radiation, these 
rotational admixtures are expected to contribute a significant, and 
in many cases a dominant part of the transition matrix element 
(especially for zl K = 1, where the admixed amplitudes are 
largest (cf. pp. 14 If.)).

Since the y-transitions within a rotational family are generally 
of mixed 7:2 + .1/1 character for J 7 = 1 , the rotational admix
tures may lead to mixed multipole radiation also for transitions 
associated with a change in the intrinsic nuclear structure and 
having d I = 0 or 1 and .~r = 4-.

Another consequence of the rotational admixtures may be to 
modify the relative intensity rides (12) and (13) for .1/1 and 7T2 
y-radiation. In certain cases, the modified rules may be derived 
by considering the /-dependence of the admixed amplitudes.

For Zl /< = 1 , however, it is found that the intensity rules 
for the 7Z2 radiation are not affected if the nuclear deformations 
for the two states are approximately the same. An interesting 
example is provided by the decay of the 489 keV state in Ta181 
(cf. Fig. 3). The squared amplitude of the rotational admixture 
is here of the order of 10 , but is nevertheless mainly responsible 
for the 7Z2 radiation as evidenced by the strong admixture of 7:2 
in the 480 keV zl / = 1 transition.
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The coupling scheme associated with large nuclear deformations, and ap
propriate to the very heavy nuclei, suggests that the preferred mode of «-decay 
involves nucleons in paired orbits. For the even-even nuclei, the strongest tran
sition thus goes to the ground state of the daughter, and the fine structure 
populates predominantly the rotational band associated with this configuration; 
for odd-A nuclei, the favoured «-decays populate the rotational band for which 
the orbit of the last odd nucleon remains unchanged. From this interpretation 
one also obtains a number of correlations between energies and lifetimes of the 
favoured «-decays in even-even and odd-A nuclei. Moreover, it is possible to 
estimate the intensity ratios in the favoured «-decays of odd-A nuclei on the 
basis of those observed in the even-even nuclei.

any striking regularities have been observed in the «-decay fine
LVjL structure of the heavy elements, especially for the even-even 
nuclei, and it has been shown that these regularities are related 
to the fact that the «-decay process primarily populates states in 
the daughter belonging to a rotational band (Asaro and Perl
man, 1953, 1954; Falk-Vairant, Teillac, Valladas, and 
Benoist, 1954; Milsted, Rosenblum, and Valadares, 1954; 
cf. also the review article by Newton, 1954).

In the present paper, we shall consider a simple picture of 
the «-particle formation, related to the coupling scheme of these 
strongly deformed nuclei, which makes possible a further dis
cussion of the regularities in the « fine structure. This interpre
tation also implies a number of relationships between the «-decay 
of even-even and odd-A nuclei.

In nuclei whose equilibrium shape possesses a large defor
mation, one expects a band of rotational states associated with 
each configuration of the particles1. In most cases, the nuclear

1 For a more detailed discussion of nuclear rotational states, cf. Bohr and 
Mottelson, 1953, 1954; and A. Bohr, 1954.

1*  
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shape is expected to possess axial symmetry, and the rotational 
spectrum is then given by

*'= A Vu+ «) + «(- i)/?1/2(/ + i/2)óa-.i2; (i)
“ V

apart from a constant depending on the intrinsic nuclear structure. 
The quantum number K represents the projection of the total 
angular momentum along the nuclear symmetry axis and is 
constant for all the states in a given rotational band. The effective 
moment of inertia which depends on the nuclear deformation is 
denoted by p, and the quantity « is a decoupling parameter which 
occurs only in the rotational spectra for configurations with 
K = 1/2.

The independent particle motion in axially symmetric de
formed potentials may be characterized by the quantum number 
Qp representing the projection of the total angular momentum 
of the particle along the nuclear symmetry axis. States differing 
only in the sign of are degenerate, and the lowest state of 
a nucleus is thus obtained by filling the particles pairwise in 
slates of opposite

In an even-even nucleus, the ground state configuration 
therefore has K — (ZÏQ ) = 0, and the associated rotational 

p
band contains the levels

/ = (), 9, 4, 6 (even parity). (2)

In an odd-A nucleus, K is equal to |£?p| for the last odd nucleon, 
and for each binding state of this particle there is a rotational 
band containing the slates

I = K, K + 1 , K + 2, . . .
(all same parity as 
the orbit of the last 
odd nucleon).

Particles occupying states which differ only in the sign of £?p 
interact especially strongly due to the large overlap of their 
wave functions. Thus, the formation of an «-particle from an 
independent particle system of this structure is expected to take 
place most easily from two such pairs of protons and neutrons. 
This type of «-decay, which is characterized by the selection 



Nr. 10 3

rules zlk = 0 and no change of parity, will be referred to as 
the favoured «-transitions.

A further consequence of the non-spherical field of the 
nucleus is the exchange of angular momentum between «-particle 
and daughter nucleus, which implies that in general several

297 H (301)

143.2 ± 0.5 (143.4)

43.02-0 1
0

Fig. 1. Alpha-decay of Pu23S. The experimental data is taken from Newton and 
Rose, 1953, and from Asaro and Perlman, 1954 a. The states are labeled by 
the quantum numbers (K, In), where n is the parity.

The a-decay of Pu238, which illustrates the typical pattern observed in the 
even-even «-emitters with A > 220, populates the rotational sequence associated 
with the ground state configuration (0, 7+) of the daughter nucleus. The 
observed energies are given in keV; the values shown in parenthesis are calculated 
from (1) by adjusting the moment of inertia to give the observed energy of the 
first excited state. The small deviations between the calculated and measured 
values have a negative sign and increase with I, as is expected for the correction 
terms to (1) resulting from the rotation-vibration interaction (cf. Bohr and Mot- 
telson, 1953, 1954). This correction has the form —Ji P(I r l)2. The value of 
Ji, estimated from the observed energies, is 71 w 2 x 10-3 keV, which is of the 
expected order of magnitude.

members of each rotational band arc populated with comparable 
intensity.

In an even-even nucleus, the «-decay should thus take place 
primarily to the lowest K = 0 band of the daughter, i. e. the 
ground state and its rotational excitations. This pattern has 
indeed been observed as a systematic feature of the « fine structure 
in even-even nuclei possessing large deformations (A > 220) 
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(Asaro and Perlman, 1953; Newton, 1954); for an example, 
cf. Fig. 1. fhe spins and energies of the populated excited slates 
arc in agreement with (2) and (1). The rotational character of 
the excitations is further supported by the E2 transition prob
abilities which are several orders of magnitude greater than for 
single-particle transitions (cf. Newton, 1954; Temmer and 
I I EYDENBURG, 1954).

The great similarity in the decay process for the different 
even-even nuclei in this region is exhibited by the marked regularity 
in the lifetime energy relations for the ground state transitions 
(Perlman, Giiiorso, and Searorg, 1950; Kaplan, 1951). With 
relatively good accuracy (within about a factor of two), the 
transition probability per second, Po, for all these transitions can 
be represented by the simple Geiger-Nuttal law

(4)

where E is the kinetic energy of the ¿¿-particle, while C and D 
are constants for each element and vary regularly with Z. The 
relationship (4) as well as the order of magnitude of C and I) 
can be obtained from the theory of barrier penetration (cf., 
e. g., Ga.mow and Critchfield, 1949). The values of C and I), 
determined by a recent analysis (Frö.man, 1955) of the empirical 
-data, are listed in fable I.

Table I.

z C D

84......... 50.15 128.8
8(5......... 50.94 132.7
88......... 51.51 136.2
90......... 51.94 139.4
92......... 52.55 143.1
94......... 53.35 147.4
96......... 53.97 151.3
98......... 54.40 -154.7

The table lists the coefficients appearing in the empirical Geiger-Nuttal re
lation (Eq. (4)) for even-even ground state transitions. The units employed are 
such that, when the ¿¿-energy is measured in MeV, the transition probability is 
given in sec-1. The coefficients are listed as functions of the charge number Z 
of the parent nucleus.
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There is also a considerable regularity in the intensities of 
the a fine structure, leading to the rotational excitations of the 
ground state configurations. The observed transition probabilities 
to the (2+) levels are of the order of (4), while those to the (4+) 
and (6+) levels are systematically smaller (Asaro and Perlman, 
1953). This hindrance, which shows a regular variation 
with A, amounting in the heaviest elements to a factor of about 
a hundred, can be ascribed only partly to the centrifugal barrier 
encountered by the «-particle.

A detailed theory of the intensity rules for the population of 
the rotational band in the daughter nucleus would involve, in 
the first place, a consideration of the a formation process and 
of the boundary conditions it implies at the non-spherical nuclear 
surface. In the second place, there would be involved a treatment 
of the penetration problem for the «-wave through the anisotropic 
Coulomb barrier (Hill and Wiieeler, 1953). Due to the ex
change of angular momentum between the «-particle and the 
residual nucleus, this latter part of the a decay process is de
scribed by a system of coupled differential equations (Rasmus
sen, 1954 a; Fröman, 1955).

The problem is simplified, however, by the fact that the 
formation of the «-particle and its passage through the region 
close to the nuclear surface, in which appreciable exchange of 
angular momentum may occur, takes place in a time short 
compared to the nuclear rotational period. It is, therefore, possible 
to a first approximation to consider the nucleus as fixed in space 
during the «-particles’ traversal of this region1. We shall later 
exploit this simplification in the comparison between the «-decay 
of even-even and odd-A nuclei.

The « fine structure pattern in even-even nuclei so far dis
cussed has included only the favoured transitions in which the 
«-particle is formed from nucleons in paired orbits, and thus leaves 
the daughter even-even nucleus in the ground state rotational 
band2. It is of course also possible for the «-decay to populate

1 For a more detailed discussion of this approximation and of the solutions 
obtained, cf. Fröman, 1955.

2 Favoured transitions may also be expected to take place to excited con
figurations with K = 0, representing either the excitation of a pair of particles 
or a collective vibration. Such states may, however, have a rather high excitation 
energy ( ~ 1 MeV) and, in fact, such transitions seem not so far to have been 
observed.
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excited particle configurations in the daughter nucleus; examples 
of such unfavoured transitions have been observed in the 
«-spectrum of Th230 («255) (Boussieres et al., 1953; Rasetti 
and Booth, 1953; Valladas and Bernas, 1953) and Th228 («217) 
(Boussieres et ah, 1953; Asaro, Stephens, and Perlman,

Fig. 2. Alpha-decay of L'233. The decay scheme is based on experimental data 
given in the references found in Table III. The notation is the same as in Fig. 1.

The «-decay is interpreted as taking place to the ground state rotational 
band in Th229. The value of K for this band is deduced, by means of (1) and (3). 
from the measured energies of the first and second excited states, and is found 
to equal the known spin of the parent nucleus, as is expected for the favoured 
«-transitions. The interpretation of the transitions as of the favoured type is 
further supported by the reduced transition probability for the ground state tran
sition (cf. Table II). For a theoretical estimate of the relative intensities of the 
fine structure components, cf. Table IV.

The position of the expected, but so far not observed, third excited state 
is deduced from (1), and the intensity of the «-group populating this state is cal
culated from (5) (cf. Table IV). The parities in the figure represent values relative 
to that of the U233 ground state, and are based on the interpretation of the «-tran
sitions as favoured, which implies no change of parity.

1953; Newton and Rose, 1954). As expected, the transition 
probabilities are appreciably smaller than for the favoured 
transitions given by (4).1

1 Note added in proof: Recently, similar transitions have been identified 
in the «-spectra of other neighbouring nuclei, and evidence has been provided 
for the (1—) character of the excited states in question (Stephens, Asaro, and 
Perlman, 1954). It has been suggested (R. F. Christy, private communication) 
that these excitations may be of collective type associated with a nuclear shape 
containing deformations of odd multipole type.
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In an odd-A nucleus, the favoured «-decays leave the last 
odd particle moving in the same orbital in the daughter as in 
the parent1. If this configuration is that of the ground state band 
of the daughter nucleus, the expected fine structure pattern is 
much the same as in even-even nuclei with the most intense 
transition going to the ground state and regularly decreasing 
intensities of the branchings to the rotational excitations of this 
configuration. An example of such a decay is provided by U233 
(cf. Fig. 2).

If the orbital of the last odd particle in the parent corresponds 
to an excited particle configuration in the daughter the transitions 
to the ground state band are hindered and the decay is expected 
to take place predominantly to the rotational band associated 
with the excited configuration in question (provided its excitation 
energy is not too great).

As an example of such a pattern in an odd-A nucleus, the 
«-decay of Am241 is shown in Fig. 3 (Rasmussen, 1954; Asaro 
and Perlman, 1954; Milsted, Rosenblum, and Valadares, 
1954).

If the favoured transitions leave the daughter with appreciable 
excitation energy (> 1/2 MeV), these transitions, although in
trinsically preferred, may be relatively weak. In this case, the « 
fine structure may be somewhat more complex with no single 
transitions dominating. The «-decays of Th227 and Pa231 appear 
to provide examples of this type (Frillay, Rosenblum, Vala
dares, and Boussieres, 1954; Rosenblum, Cotton, and Bous- 
SIERES, 1949).

The similarity between the favoured «-transitions in odd-A 
and even-even nuclei implies a number of simple relations be
tween the two classes of transitions, as regards energy systematics, 
lifetimes, and fine structure intensities.

In particular, a close correspondence is expected between the 
even-even ground state transitions and the favoured odd-A 
transitions to the head of the daughter band (i. e. having A I = 0). 
The decay energies of the two types of transitions should exhibit 
similar trends, and the odd-A transitions in question should also 
follow approximately the same Geiger-Nuttal law (4) as the even
even ground state transitions.

1 A similar interpretation of the « fine structure in odd-A nuclei has recently 
been discussed by Newton, 1954, and by Rasmussen, private communication.
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( (67.25)

+ 9<3-<¡6 (99.//)

+ 43.36

The decay scheme is based experimental dataon

from (5) (cf. Table IV).
that the «-transition to the (5/2, 5/2 + ) level 
= 2. Evidence on this mixture may be obtained 
this «-group and the 60 keV El y-ray. From

1.5 X 10~3 * * * * * * * II keV, which agrees with
i-j

(cf. Bohr and Mottelson, 1953, p. 91)). The «-intensity to the expected (5/2,
11/2 + ) level has been estimated

From (5), one also estimates
should be 80 °/0 I = 0 and 20 °/0 I
from the «-y correlation between 
the calculated mixture and the spin values given in the figure, one estimates

z, « II (tt)IV (0) = 1 ± .35 P2 (cos 6). An angular anisotropy of A = —-— — 1 — — 0.21
II (71/2)

has been found (Fraser and Milton, 1954) to decay with a lifetime of 5.5 x 10~9 
sec. However, as evidenced by the a-y correlations in even-even nuclei, one expects 
for these strongly deformed nuclei, attenuations from quadrupole couplings acting 
over times appreciably shorter than those studied. The observed anisotropy which 
is about half that estimated therefore appears consistent with the present inter
pretation of the decay.

The a-decay to the ground state of Np237 is strongly hindered (F ~ 10~3). 
If one tentatively assumes the 33 keV level to be a rotational excitation of the 
ground state, and the «-decays to both these states to be predominantly 1 = 1, 
one estimates from (5) the relative 
state transition. This interpretation 
a branching ratio of 1:0.035 for the 
(5/2, 5/2—) and (5/2, 7/2—) levels 
1955). The observed ratio is 1:0.07

3

intensities 1:0.25, in favour of the ground 
of the first excited state would also imply 
El y-rays from the (5/2, 5/2 + ) level to the 
(cf. Alaga, Alder, Bohr, and Mottelson, 
(Bering, Newton, and Rose, 1952).

Fig. 3. Alpha-decay of
given in the references found in Table III. The states are labeled as in Fig. 1. 
Parities are relative to that of the Am241 ground state. Levels which are inter
preted as belonging to the same rotational band in Np237 are drawn above each 
other, while the two different rotational bands are displaced sideways.

The favoured «-transitions take place to the 60 keV level and its rotational 
excitations. The accurately measured energies in this series show the /¿-value to 
be 5/2. The very small difference between the observed value for the (5/2, 9/2 + ) 
level and the value calculated from (1) (shown in parenthesis) is just of the sign 
and magnitude expected from the rotation-vibration interaction, as observed in 
U234 (cf. Fig. 1). (For Np237, one finds 11

the value obtained from U234, considering the expected variation of 11 with

59-62 + O
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Thus, the observed transition probabilities may be used to 
identify the favoured odd-A transitions in a given decay scheme. 
The «-transitions in odd-A nuclei, tentatively classified in this 
manner as favoured and having 4 / = 0, are listed in Table II, 
together with the even-even ground state transitions.

The table gives the «-energy and reduced transition prob
ability F, which is the ratio of the observed transition probability 
to that given by (4). Although the classification of the odd-A 
transitions is in some cases rather uncertain, there are seen to 
exist for almost all the odd-A «-emitters groups with transition 
probabilities comparable to those of the even-even ground state 
transitions1. The fluctuation in F for the odd-A and even-even 
transitions seem to be comparable, apart from a few uncertain 
cases, but there appears to be a systematic tendency for the 
odd-A F-values to be somewhat smaller than unity, on the 
average by a factor of about two. As will be seen below, there 
are a number of such small systematic differences between the 
odd-A and even-even favoured transitions.

The «-energies of the favoured d / — 0 transitions are plotted 
in Fig. 4. It is seen that the odd-A and even-even transitions 
exhibit closely parallel trends with, however, a systematic tendency 
for the odd-A energies to be smaller, by about 200 keV, than 
those interpolated between the even-even nuclei.

Such an effect may be understood in terms of the change of 
the kinetic energy of the last odd particle associated with the 
small shrinking of the nuclear volume. Thus, if one assumes the 
nuclear radius to be proportional to A1/s, the difference in radius 
between the parent and daughter nuclei implies an energy shift 
of just a few hundred keV.

In cases where a rotational fine structure has been observed 
in the favoured odd-A decays, more detailed tests of the present 
interpretation can be made. These cases are listed in Table III, 
which gives the observed level spacings in columns four and five.

The ratios of spacings of successive states are seen to agree 
well with those given by (1). Moreover, as expected, the moments 
of inertia are similar to those in neighbouring even-even nuclei.

1 In a quantitative comparison between odd-A and even-even transition 
probabilities for these Zl 1 = 0 favoured transitions, a small correction, of the 
order of 20 per cent, should be made for the I = 2 contribution to the odd-A 
decay (cf. (5)).
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Table II. Favoured a-transitions with /J I — 0.

Parent 
element

Even-even isotopes 
ground state transitions

Odd-A isotopes
17 = 0 favoured transitions

A E (MeV) F E (MeV) i F

88^a 220 7.43 0.6 219 8.0 0.3
222 6.51 1.3 221 6.71 0.3
224 5.681 1.0 223 5.596 0.2
226 4.779 0.8

8 9Ac 223 6.64 0.3
225 5.80 0.3
227 4.942 0.2

901 h 224 7.13 1.3 223 7.55 0.5
226 6.30 1.3 225 6.57 0.4
228 5.421 0.8 227 5.704 0.2
230 4.682 0.6 229 4.85 0.5
232 3.98 1.6

9iOa 227 6.46 0.6
231 4.722 0.4

92I 228 6.67 0.8 227 6.8 2.0
230 5.85 1.3 229 6.42 0.3
232 5.318 0.6 233 4.823 0.5
234 4.763 0.8 235 4.20 0.3
236 4.50 1.0
238 4.18 1.0

93^P 231 6.28 25.1
233 5.53 2.0
235 5.06 0.5
237 4.77 0.4

91PU 232 6.58 0.1 235 5.85 0.4
234 6.19 0.6 239 5.150 0.3
236 5.75 1.0 241 4.893 1.3
238 5.495 0.6
240 5.162 0.8
242 4.898 0.8

95Am 237 6.01 0.1
239 5.75 0.2
241 5.476 0.6
243 5.267 0.8
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Table II. Favoured a-transitions with J / = 0 (continued).

Parent 
element

Even-even isotopes 
ground state transitions

Odd-A isotopes
Zl / = 0 favoured transitions

A E (MeV) F A E (MeV) F

96Cm 238 6.50 1.6 241 5.89 0.1
240 6.26 1.0 243 5.777 0.5
242 6.110 0.6 245 5.34 0.3
244 5.798 0.8

97Bk 243 6.20 0.1
245 5.90 0.3

98Cf 244 7.15 0.8 249 5.82 0.3
246 6.75 0.8
248 6.26 1.3
250 6.05 0.6
252 6.15 1.3

Table II. Favoured a-transitions ivith zl 1 = 0.
Most of the investigated odd-A «-decays contain a single component, or a 

group of components, having transition probabilities of the order of magnitude 
(4), characteristic of the even-even ground state transitions. These components 
are interpreted as the favoured transitions which leave the configuration of the 
last odd particle unchanged. The most energetic of these favoured transitions 
is expected to have zl 1 = 0, and to be very similar to the even-even ground state 
transitions.

The table lists the «-energies of these favoured zl / = 0 transitions in the 
even-even and odd-A nuclei, together with the reduced transition probabilities F, 
which give the ratio between the observed transition probability for the group 
in question and that calculated from (4) and Table I. (For odd-Z elements, the 
appropriate coefficients C and D have been obtained by interpolation in Table I).

Included in the table are odd-A nuclei for which «-groups have been observed 
with F >0.1. A more detailed test of the classification of these transitions as 
of the favoured type can be made in cases where the rotational fine structure 
has been observed (cf. Tables III and IV).

The empirical data is taken from the review articles by Hollander, Perlman, 
and Seaborg, 1953, and by Seaborg, 1954 and, in addition, from Ghiorso et al., 
1954, (Cf249 and Cf250), and Thompson et al., 1954 (Cf252). The table includes only 
nuclei with Z 88, which are sufficiently far removed from the closed-shell region 
around Pb208 that one may expect the simple features associated with the coupling 
scheme of strongly deformed nuclei.

The tendency toward somewhat larger moments of inertia for 
these odd-A nuclei as compared with the even-even neighbours 
continues a trend previously observed in other regions of the 
periodic table (Bohr and Mottelson, 1954).

The value of K for the rotational band in the daughter 
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nucleus, as obtained from the observed rotational energies, is 
listed in column seven of Table III. As is expected for the favoured 
«-transitions, it is seen to agree with the K-values for the 
parent nucleus in all the cases where the spin of this nucleus 
has been measured.

The present interpretation of the favoured «-decays further

Fig. 4. Energy systematics for favoured a-transitions. The figure shows the «-energies 
for even-even ground state transitions and for the odd-A transitions tentatively 
classified as favoured and ¿47 = 0 (cf. Table II). As expected, the two types 
of transitions exhibit closely parallel trends, with the odd-A energies systematically 
smaller by about 200 keV than those obtained by interpolation between the even
even energies. The most conspicuous deviation is that of U229, where the classi
fication of the listed group as favoured is rather uncertain, due to the uncertainty 
in the intensity of the electron capture branch of this decay.

implies that the ground state rotational band in the parent nucleus 
should have energy spacings very similar to that populated in 
the daughter. Thus, it is of interest, for example, that in the 
ß-decay of Np239, leading to Pu239, y-rays are observed (cf. Hol
lander, Perlman, and Seaborg, 1953) with energies 13 and 
49 keV, which are very close to the fine structure separations 
observed in the «-decay of Pu239 (cf. Table III). In addition, 
the suggestion (Asaro and Perlman, 1952) that the predominant 
mode of the «-decay of Pu231 (/= 1/2; cf. Table III) does not 
lead to the ground state of U235 (/= 5/2; Stukenbroeker and 
McNally Jr., 1950) is in agreement with the present interpretation.

The similarity between the favoured transitions in even-even 
and odd-A nuclei makes possible an estimate of the relative
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Table III.

A = k\ E~E0 ■^2 Eg e3-e0 Kf
f 3h2 \ /3h2\

nucleus 1 3 1 U)...
enees

T’ rn 243 278 44.2 102 (101) (170) 5/2 38 44 a)
95Am243 5/2 75 43 97 (98) (166) 5/2 37 45 b) c)
95Am2« 5/2 60 43.3 98.9 (99.0) (167) 5/2 37 45 b) d)
pn239941 u 1/2 ? 13.5 52.0 (83) 1/2 37 43 e)

92U283 5/2 0 43 99 (98) (166) 5/2 37 58 f)
91Pa231 3/2 331 68 9 68

a) F. Asaro (private communication)
b) Asaro and Perlman (1954).
c) Conway and McLaughlin (1954).
d) Milsted, Rosenblum, and Valadares (1954).
e) van den Berg, Klinkenberg, and Regnaut (1954).
f) van der Sluis and McNally (1954).

Table 111. Rotational fine structure in favoured odd-A <x-transitions.
The table collects the data on the rotational bands populated by the favoured 

«-decays of odd-A elements. The empirical evidence is taken from the review 
article by Hollander, Perlman, and Seaborg, 1953, except where otherwise 
noted.

Column two lists the spin of the parent nucleus, where measured. Column 
three gives the excitation energy Ao of the state in the daughter, which corresponds 
to the ground state of the parent, and is populated by the most energetic of the 
favoured «-transitions (cf. Table II). The rotational excitations of this state are 
populated with regularly decreasing intensities and the observed energy spacings 
Ev — Eo and E2 — Eo are listed in columns four and five. These states have the 
spins Kf + 1 and Kf + 2 (cf. (3)), where Ay is the spin of the Ea level. The value 
of Ay can be determined by means of (1) from the observed energy ratio E2 — Eo: 
Et ■— Eo, and is listed in column seven. It is seen that, as expected, the values 
of Kf are the same as those of A, (column two). The energies E2 — Eo and E3 — Eo, 
calculated from (1) by adjusting the moment of inertia to the observed value 
of Et — Eo, are given in parenthesis in columns five and six. The last columns, 
eight and nine, provide a comparison between the observed moments of inertia 
for these rotational series and those of the ground state band in the neighbouring 
even-even nucleus, obtained by removing the last odd nucleon. The irregular fine 
structure intervals observed for the favoured «-decays of Pu239 suggests Kf = 1/2, 
in agreement with the measured value A, = 12; the decoupling parameter deduced 
from the observed energies is a = -—0.26 (cf. (1)).

intensities in the fine structure pattern in odd-A nuclei on the 
basis of those observed in even-even elements. The principal 
difference between the two cases is that, in an even-even nucleus, 
an «-particle with a given angular momentum, I, can populate 
only a single member of a rotational family in the daughter 
while, for odd-A nuclei, several such states can be populated 
(except for I — ()). Thus, the total emission probability for 
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«-particles of a given / in odci-A nuclei is shared among several 
fine structure components in each rotational band. A simple 
comparison of the relative intensity patterns for even-even and 
odd-A nuclei can he obtained in the approximation, discussed 
above, in which the nucleus may be considered as fixed in space 
during the traversal of the «-particle through the non-spherical 
pari of the Coulomb barrier. In this case, the total emission 
probability for a given / is the same for the favoured transitions 
in the even-even and odd-A nuclei, assuming the nuclear de
formation to be approximately the same in the two cases. More
over, the probability that an «-particle of given I leaves the 
daughter in a particular state of the rotational band is given in 
terms of a vector addition coefficient1.

Thus, for a favoured «-transition from a parent in a state 
/f, Ki to a daughter in a state If, Kf = K¡, one obtains approx
imately

P = P„(Z, 11^^1,11,1^ (5)
I

for the transition probability per second2. The quantity Po is given 
by (4) and is a function of Z and of the energy E of the fine struc
ture component in question. The coefficient which determines I he 
total reduced transition probability for a given I may be obtained 
from the observed intensities in the even-even nuclei. The value 
of c0 is unity by the definition of 7J0; the coefficient c2 is relatively 
constant for the even-even «-emitters with A > 220 and is on 
the average about 0.73; the values of c4 vary rather strongly 
with A, becoming quite small al the very heaviest elements; 
values of less Iban 0.01 having been reported (Asaro and Perl
max, 1953). Only even values of / are involved, since favoured 
«-transitions leave the nuclear parity unaltered. The final factor 
in (5) is the vector addition coefficient for the addition of the 
angular momenta I, and 1 to form the resultant

In fable IV, the relative fine structure intensities in the 
favoured odd-A «-transitions arc compared with those calculated

1 Similar relative intensity rules apply to ß- or y-transitions of a given multipole 
order, populating different members of a rotational band (Alaga, Alder, Bohr, 
and Mottelson, 1955).

2 In (5), the small energy dependence of the centrifugal barrier effect is 
neglected.

3 Cf. p. 18 for note added in proof.
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Table IV.

Parent 
nucleus A

Obs. rel. intensities
I=KpKf+ l,Af+ 2

Calc. rel.
I=Kf,Kf +

intensities Assumed 
c«l,A7+2 Kz+3

98Cm243 (5/2) 100 10 ~4 100 15 2.2 0.03 0.01
95Am243 5/2 too 15 ~3 100 14 2.1 0.03 0.01
95Am244 5/2 100 17 1.7 100 14 2.2 0.03 0.01
94Pu239 1/2 100 29 16 100 23 19 0.4 0.03

I 123392^ 5/2 100 18 2.4 100 13 1.8 0.2 0.1
pQ23191*  a 3/2 100 ~20 100 11

1 In unfavoured transitions with Z > /<, + Kf(K¡^A(); the ex
pression for P may contain extra terms, similar to the decoupling term in (1), 
associated with the symmetrization of the wave function describing the nuclear 
rotational motion.

Dan.Mat.Fys.Medd. 29, no.10. 2

Table IV. Relative intensities of fine structure components
in favoured odd-A a-transitions.

The empirical data is taken from the references given in Table III. The spins 
of the parent nuclei arc listed in column two. (For Cm243, the //-value is deduced 
from the data in Table III). The observed relative intensities of the favoured 
«-transitions leading to the states with spins If = Kf, Kf + 1, Kf + 2 are listed 
in column three. In column four are given the relative intensities calculated from 
(5) and (4). The coefficient c2 has been taken to be 0.7, which represents an average 
value of those measured for the I = 2 transitions in even-even nuclei in this region 
of elements. The assumed values of c4, which are listed in the last column and 
which only appreciably affect the calculated I = Kf f- 3 intensities, are taken 
from Z = 4 transitions in neighbouring even-even nuclei.

from (5). The rather good agreement lends some further support 
to the present interpretation of these transitions.

The published data test the expression (5) only for transitions 
involving Z = 0 and 2; due to the smallness of c4 as observed 
in even-even nuclei, one expects in odd-A nuclei weak transitions 
populating the higher members of the rotational band in the 
daughter (cf. Table IV). Thus, for the / = 4 transition from 
Am241 to the expected 11/2 state at 226 keV in Np237 (cf. Fig. 3), 
one estimates, using c4 = 0.01 as determined from the Pu238 
decay, an intensity of about .03 °/0. Recently, an «-group of the 
corresponding energy and with an intensity of this order of 
magnitude has been tentatively reported (Rosenblum and 
Valadares, private communication).

Expression (5) can also be used for the unfavoured «-decays, 
but its application is in such cases more restricted, since the 
coefficients cl are unknown1. It may, however, be used to estimate 
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relative transition probabilities to different members of a rota
tional series if only a single value of I enters significantly (for 
an example, cf. Fig. 3).

A further test of (5) can be provided by a-y correlations 
which may be employed in the case of «-transitions of mixed / 
to yield the relative intensity of the different /-components. (For 
an example, cf. Fig. 3).

The authors wish to acknowledge stimulating discussions with 
Drs. R. F. Christy, S. Rosenblum, M. Valadares, as well as 
with the members of the “Institut du Radium’’ in Paris.

Institute for Theoretical Physics 
University of Copenhagen 

and
CERN (European Organization for Nuclear Research)

Theoretical Study Division, Copenhagen.

Note added in proof (cf. p. 16):
Recent studies of the « fine structure of Cf250 and Cf252 (L. B. 

Magnusson et al., Phys. Rev. 96, 1576, 1954) and of 100254 
(F. Asaro, F. Stephens, and I. Perlman, Bui. Am. Phys. Soc. 29, 
no. 8, G 4) indicate somewhat smaller values for c2 0.25) and 
larger values for c4 (~ 0.03) for these new isotopes.
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Introduction.

The sixth paper of this series discussed systems with two
5 /‘-electrons1 and a preliminary note2 mentioned some 

features of the absorption spectra of lanthanide and actinide 
ions containing more /’-electrons. The present paper is an attempt 
to identify the energy levels of these systems.

In the first transition group, the energy levels of the free ion 
in vacuo arc usually well known and the influence from the 
surrounding molecules determining the observed spectra.3,4’0,6 
In contrast to this behaviour the lanthanide and actinide ions 
show relatively small chemical effects in the spectra, but the 
terms of the free ion are not known from atomic spectroscopy.

Thus, the most important part of the identification is the cal
culation of the energies of the different terms originating from 
the electron configuration [Äe] 4 /’" in the lanthanides and [Em] 
5 f'1 in the actinides. Condon and Shortley' have presented a 
very extensive theory of the electrostatic interaction between the 
electrons in partially filled shells.

The calculation of the energy levels proceeds in three steps 
of refinement: First, the electrostatic interaction can be expressed 
in terms of the parameters F2, F4, and F6 (Fo is disregarded in 
the present paper, since its contribution is invariant within the 
same configuration), as outlined in ref. 7, p. 174. But in the case 
where two or more terms of the given configuration present the 
same set of quantum numbers L and S, only the average energy 
of these terms can be obtained directly. Next, these cases can be 
treated by construction of the appropriate eigen-functions and 
by finding the different eigen-values. Racah8 has developed very 
useful group-theoretical methods for calculating the energies of 
especially f "-configurations. If q terms present the same com
bination of L and 5, the energy of the terms can be found as 

1*  
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the eigen-values of a matrix of the order q, while the results are 
independent of all other terms (in the Condon-Shortley theory it 
is necessary to calculate all the energy levels in a certain order). 
The third achievement of a first-order calculation is the intro
duction of the intermediate coupling-scheme, where the mutual 
perturbations between the levels in the pure Russell-Saunders’ 
case are given as functions of the Lande interval factor g. For 
instance, Ishidzl and Obi1’ have given the corresponding matrices 
for /^-systems. The values of C in the individual multiplets, ex
pressed in terms of C.i/ or C5/ can also be found by the two first 
steps of the Condon-Shortley method mentioned above.

/3-systems.

The first Condon-Shortley treatment of any /^-system was 
given by Satten10 for Nd ~ in crystals of Nd (BrO^ 9 H20. 
He pointed out that the energy differences between the quartet 
terms are multiples of 5 F2 + 6 F4— 91 F6. It is very convenient 
for purposes of identification that the ratio between the single 
parameters in this case is unimportant. The strong bands ob
served in A7/+ + + imply most certainly 5 F2 + 6 F4— 91 F6 = 
1400 cm-1 and gj / = 900 cm- , which can also be extrapolated " 

from Pr+ + + . £ in the quartets equals while /^-systems 

have C = C,,/ •

But the relative values of F2, F4 and Ff) are important for the 
positions of the doublet terms. From the definition of the para
meters, Satten implies the inequalities F4 < 0.203 F2 and FVl 
< 0.00306 F2, but the correct value' in the last case is F6 < 0.0306 
F2, as is also given by Saiten in the fraction in eq. 11. When
ever F6 is negligibly small and F4 — 0.2 F2, the doublets do not 
give as good agreement with experimental results as do the 
quartet terms. Rather, a value of F6 = 0.02 F2 can be used2 as 
a tentative proposal. Table 1 gives the centre of gravity for each 
term in the two cases.

In the cases where the doublet terms are represented twice

* As also from A . = 644 cm-1 in Ce+ + ~known from atomic spectroscopy55. 
Nevertheless, the (¡nite small splitting of the multiplet 4/J might support ç4 con
siderably < 900 cm-1 in A'd_r + + .
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Fig. 1. Centres of gravity of multiplets in /"-systems, expressed in the Condon- 
Shortlev parameter F2, assuming F4 = 0.2 F2 and F6 = 0.02 F2.

(in the righthand coloumn), the complicated energy expressions 
are not linear in Fe, while they are so in the other terms.

Fig. 1 gives the terms of (he /'"-systems with the second choice 
of parameters F4 == 0.2 F2 and FG = 0.02 F2, and with the 
lowest term at 0 F2.

Table 1. Electrostatic interaction of f3 for selected values of 
the Condon-Shortley parameters.

Ft
Fs

= 0.2 F2
= 0

F4 = 0.2 F2
Fa = 0.02 F2

F< = 0.2 F2 | F4 = 0.2 F2
= 0.02 F2= 0

4/............. —- 93.2 F2 — 97.6 F2 2H.............. __ 62.0 F2 __ 54.2 F2
4 F............. - 49.8 — 67.0 211'.............. — 2.6 — 5.1
4 .S'............. - 49.8 — 67.0 2G................ 39.7 40.8
4G.............. - 25.0 — 49.4 2G'.............. 4- 63.5 4_ 39.8
4£) ........... - 18.4 - 18.8 2F................ 4- 7.8 + 20.6
2L............. - 12.6 13.0 2F'.............. 4- 124.4 + 113.6
2K........... -- 39.8 - 39.0 2D .............. — 40.3 — 30.5
2I............. 6.2 — 12.3 2D'.............. 13.7 1.2
2P............. - 33.8 - 30.9
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Table 2. Doublet term levels for Nd ~ + ~

Without 
intermediate 

coupling

With approx, 
intermediate 

coupling
Observed11

17300 cm—1 16600 cm 1 15700 cur
17900 17600 16000
21300 21500 20800
22400 24000 21000
21400 21300 21300
23500 23200 21700
25100 24500 23400
25100 25900 23900
23300 21700 23100
26400 26000 26300
30000 30500
31900 31900 30400
30900 30900 31800
31400 31500
32200 32400 33500
34700 34700 34400
35000 35700
34600 35000
40600 41100 38500
42700 42600 39900
48700 49200
47800 17900
72600 72700
71500 71500

'fable 2 gives the doublet levels for the /^-system .VcZ+ + + , if 
F2 = 325 cm1, F4 = 65 cm \ F6 = 6,5 cm -1, = 900cm—1
and the centre of 47 = 3 3 0 0 cm-1.

There are calculated levels in two cases: (1) without inter
mediate coupling effects and (2) an approximate treatment of the 
perturbations given by Isiiidzu and Obi.9 If the secular deter
minant is written

u i ! o J o ... (i i

^22 • • • ^2n

^nl (hi2 • • • ^nn

0, (O

where <ipq = aqp, and especially aqq = Eq — F and Hp(/ = 
C i / (/> F 7) • 1S energy of the unperturbed level and k 
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the non-diagonal elements, then different roots of E are the 
perturbed levels. If one of the unperturbed levels, Eq, has a 
larger distance from all the other Ep than the order of magnitude 
of kpq ^4, it is a good approximation to write one of the roots

» = + <2) 

P + q

When I Eq — Ep | decreases, the formula gives loo large pertur
bations, and in the limit Ep — Eq the mutual repulsion of the 
levels are given by

¿ = Eq~iz kpq£4 I. (3)

If only two levels coincide, their centre of gravity can be used 
as a level and be perturbed by all the contributions, acting 
separately on them.

The third column of Table 2 gives the wave numbers of the 
bands, observed by Stewart11 in the spectrum of aqueous 
solutions of neodymium perchlorate. In some cases, e. g. the 
weak bands in the blue due to 2G and 2K, the aquo ion in solution 
shows the four predicted bands more distinctly than the crystal, 
'flie absorption spectrum of the solid is very valuable for in
vestigations of the fine structure,10 but is not so useful for detec
tion of the atomic level, which is split more by crystal fields of 
lower symmetry in the rigid crystal.

The single band at 427.5 m/i (23400 cm-1) is presumably 

due to the transition to 2Pi/2, which is the state with J = - 
sought for by Satten.

Fig. 2 shows the observed spectra of the f3- and /^-systems; in 
the case of AW+ + + the measurements bv Stewart11 arc given.

The electron configuration [Km] 5 f3 is exemplified by U+ ++, 
Np+4, PuO}, and AmO2i+. The absorption spectrum of U + + + 
in aqueous solution has been reported by Kato,12 Seaborg,13 
and is extensively discussed by Stewart.11 The infra-red part 
of the spectrum has been investigated by Rohmer et al.10 These 
authors found two weak bands at 7070 and 10320 cm- , and 
two strong bands at 8230 and 11240 — 11490 cm-1, whereas the 
band at 9430 cm-1 presumably15 is due to impurities of U~4, 
while Stewart14 assigns the band to U+3. The reflection spectrum 
of solid UCI3 has been studied among others by Freed and
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Fig. 2. Observed spectra of f3- and /4-systems in aqueous solution. Neodymium 
(ill),11 uranium (III),14 neptunium (IV),17 plutonium (V),13 americium (VI),18,56 
promethium (TH),21 neptunium (III),17 plutonium (IV),22 and americium (V).18

Sancier.1’ Xp 1 was studied by S.ioblom and Hindman1' in 
1 M HCl and 1 M H2SO4, giving evidence for the pure aquo ion 
in solution, while PuO2 in 0.5 .1/ HCA was studied by Connick, 
Kasha, McVey and Sheline (ref. 13, p. 559). AmOt + was in
vestigated*  by Stepiianau, Nihon and Penneman.18

If the transition is 4/9/2 — 4715/2, then C5/ = 1700 cm ’, 2100cm-1 
and 2700 cm 1 can be implied from the strong bands with centres 
at 11300 cm-1 (Í7 + 3), 13800 cm-1 (Xp 4) and 17600 cm-1

* Asprey, Stephanau and Penneman56 found a high, narrow band at 10100 
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(PuOz). This is in good agreement with the value of C5/ = 1600 
cm-1 in F4 (ref. 1). The bands at 8200 cm“1 (F+3), 10400 
cm 1 (JVp+4), and 11700 cm“1 or 12900 cm“1 (Z^zzO^) are then 
probably 4Z9/2— 4A:3/2- 1 identification of the higher terms is 
rendered difficult by the large value of £5/. The three bands 
with increasing intensity at 13800, 16400, and 19100 cm“1 in 
Lr + 3 and 16800, ~ 20000, and 23300 cm“1 in Np+4 arc perhaps 
due to 4F5/2, 4F7/2, and 4F9/2, respectively. This gives the distance 
between the centre of gravity 4F—4Z equal to 16400 — 6000 = 
10400 cm“1 in F + 3 and 20000 — 7400 = 12600 cm“1 in Np 4. 
This is slightly larger than the 10000 cm“1 of Nd+,i, and the 
displacement towards higher wave numbers in the actinides is 
thus mainly due to larger values of £. The other bands, on the 
basis of this theory, are due to levels of 2H, 4G, 2K . . but the 
observed bands over 20000 cm“ cannot be identified with 
certainty as yet. In U+3 only one such band at 22200 cm“1, 
which is weak and narrow, is observed.

* Measured in 10 M HCl by Messrs. K. G. Poulsen, M. Sc., and F. Woldbye, 
M. Sc., using the new Cary spectrophotometer. The scarlet colour, produced by 
reduction with zinc, disappears at room temperature in less than a minute. Solutions 
in 6 M HClOt are reduced much more slowly under formation of traces of chloride 
by metals, but the bluish grey solutions are of more prolonged stableness. Fontana53 
measured the reaction rate with water in perchlorate medium and found it strongly 
increasing with the ionic strength, but not dependent inter alia on the hydrogen 
ion concentration. The colour change with HCl is peculiar, since no particular 
effect on the uranium (III) spectrum could be observed. It is perhaps connected 
with the shift of the uranium (IV) bands in chloro complexes, which cause dif
ferent overlappings of the absorption bands. Mixtures of trivalent and quadrivalent 
uranium in concentrated hydrochloric acid are olive-brown, because only light 
in a narrow range about 560 m/z contributes to the visual impression. Cf. the 
observations of Someya.60

Table 3 illustrates the choice of parameters Ç5/ = 1700 cm 1, 
F2 — 340 cm“1, F4 = 68 cm 4, and F6 = 6.8 cm 1 for F + 3. The 
second column gives the approximate influence (within an 
accuracy of ~ 200 cm“1) of intermediate coupling, cf. eq. 2 and 
ref. 9. The ground-state 4Z9/2 is decreased 1200 cm“1 by the per- 

9turbations of other levels with J — -,

The wave numbers of Table 3, when multiplied by 1.2, apply 
quite well to Np 1 and they explain the large number of bands 
observed between 19000 and 25000 cm“1 in this spectrum. Over 
24000 cm 1 in L7+ appears the broad and intense absorption 
due to the transitions1 [Fzn] 5 f3 —> [Em] 5 /’26 d with maxima*  at
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Table 3. Calculated and observed levels of f

Calc, without 
intermediate 

coupling

With approx, 
intermediate 

coupling
Observed

4 i 3100 cm-1 4100 cm-1
4 713/2 .............................................. 6900 7800 8200 cm 4
4/i-./o .............................................. 11100 11700 11300
4F3/2 .............................................. 13100 1 2600
4 p 14500 15000 1 3800..............................................

16500 16600 15700
4f7/9 ..................................... 1 6500 1 7300 16400
4g5/2 ..................................... 18200 18800 19100
4 p 19100 18100 19800
2Hq/9 .............................................. 20100 19700
4G7/2 .............................................. 20200 20900 22200
~H 11/2.............................................. 21200 22200
4Ga n 22800 23200
~KV3/2.............................................. 23900 25100

24400..............................................
4Gu/2..................................... 25900 26300

25800, 28500, and 31000 cm 1 with molar extinction coefficients 
~ 1000.

Np 1 does not show this type of absorption1' below 40000 
cm , which shows the increasing energy difference between 
5 /’- and 6 (/-electrons with increasing atomic number by the same 
oxidation state, i. e. slate of ionization. PuOT also has quite 
weak bands in the measured range (10000—28500 cm“1), and 
there seems to be a tendency towards lower intensities with 
higher oxidation state. This was likewise observed for the iso- 
electronic sequence Ap 3 Pu+ —Arn()2 discussed in the next 
section. The high narrow bands18,j6 of at 10100 and
15100 cm-1 and the weaker bands at 13200, 13700, and 16200 
cm 1 are presumably due to /"-transitions, while the absorption 
at higher wave numbers is a molecular spectrum of the UO%+- 
type.1
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/‘-systems.

The electrostatic interaction is for the quintet terms:

V 95 F2 240 F4 1079 F
5G 40 174 2080
5F - 60 198 1716

5 132 - 2717
5S 60 198 1716

It is seen in all cases that the energy is 30 F2 + 99 F4 + 858 F6 
lower than the quartet terms of /3 with the same L, and especially, 
the energies of 5F and 5S are equal. The interval factor £ for all 

the quintet terms equals — Cn/- Two of the triplet4 
presented only once in f4:

3M — 55F2 — 15OF4 — 211F6 C =

3L — 70 — 105 — 310 £ = 

while the others are represented twice or more times. Rao19 has 
calculated the matrices of electrostatic interaction in these cases 
by Slater’s method.7 Reilly20 recalculated these matrices by 
means of Racah’s method8 and corrected several errors. Their 
elements are given in the parameter system of Racaii as the 
linear combinations

e0F° + eiF1 + e2F2 + e3F3,

where F° = Fo 1 0 F2 - 33 F4 — 286 Ff)

E1 = g {70 I-, + 231 Ft + 2002 F,} 

E2 = ~(L-3F4 + 77y

E3 = |{5F2 + 6F4-91 Fe}.

It is valid8 for all the terms of the configuration (n < 7)

9 (7)r0 =
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and e0El> can thus be nsed for convenience as zero-point of the 
energy-scale, er is given as function of n, the seniority number8 
n (which can be n, n-2, j?-4 or n-6 and at least 0) and the total
spin S:

9 (n — v) i> (i> + 2)
2 4 8(8- 1). (8)

I he non-diagonal elements contain only e2E2 + e3E3 contribu
tions. Since e2E2 and e3E3 are of the same order of magnitude 
and mostly smaller than Ji1, it is seen that the terms are divided 
into groups with the same n and 8 (and the highest values of 
8 and n have the lowest energy inter alia), whose structure is 
determined by the e2E2 -f- e3E3 values.

The matrices of Reilly20 are used with the assumptions that
F4 = 0.2 F2 and F6 — 0.02 F(i (giving E1 = 17.36 E2, E2 =
0.06 E2, and E3 = 1.46 F2) and E° = 0. The energies below
60 F2 are then:

■7 _4-*  20 30.7 F2 U>20 42.9 F2

4°00 0 î^3( 44.7
ä 0 3 P4 7 IL 45.7
^20 17.5 7)4Z720 48.2 (0)
4^30 21.6 3 F

47 30 52.3
3 /4-c,21 36.6 41 52.9
3z>
4(/2t 38.5 3/

4y20 54.1

The superscript is as usual the multiplicity 2 8 + 1, the left
subscript the seniority number v and the right subscript the
quantum numbers U , which c an be found in ref. 8, Table 1. They
denote a group-theoretical classification of the terms in /’"-systems.

It is seen that f3- and /^-systems are likely to have their strong 
absorption bands in the visible spectrum at nearly the same 
places. Really, Pm + + + has, according to Lantz and Pakker,21 
a group of strong bands between 12000 and 22000 cm 1 as also 
A’d ‘ . The continuous absorption given at the higher wave 
numbers can perhaps be ascribed to the influence of the strong 
radioactivity on the solvent. The molar extinction coefficients in 
the figures are erroneously multiplied by 1000.

The electron configuration [Em] 5 /4 is exhibited by ions 
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Np+', Pu4, and AmO£. Kig. 2 gives the spectra measured of 
the neptunium (HI) aquo ion1' and of americium (V).18 The 
monomer aquo ion of plutonium (IV) was studied by Hindman.-2

The broad bands at ~ 32000, 34500, 37500, and 42000 cm““1 
of Np r are due to transitions [Em] 5 /'4-> [Em] 5 f3 6 d with 
the excited states 5L, 5/i ... In contrast to this atomic spectrum, 
the strong bands of plutonium (IV) complexes in the ultraviolet 
are presumably due to electron transfer, i. e. internal redox pro
cesses.2’3 Chloro complexes of U"‘ 1 have their “electron transfer 
spectrum’’ over 34000 cm- , but this is found below 25000 cm-1 
in chloro complexes22 of Pu~ 4, since the latter ion is a stronger 
oxidizing agent, i. e. has greater electron affinity.

The narrow bands of Pu+ 1 have an average of 19 per cent 
higher wave numbers1 than Arp+3. Similar results were obtained 
above for Np+4 and i/+3. Thus, the external charge seems to 
have a strong influence on the screening of the /’-electrons. The 
screening constant is presumed to be quite constant 34 in the 
trivalent lanthanides23 and 58 in the actinides.21 But the /’-elec
trons seem not screened much in ions of low charge,*  e. g. C4/ 
is —0.1 cm“1 in neutral cesium and 64 cm““1 in Ba+, and £5, 
is only 81cm“1 in Ra+ while it is 1236 cm"“1 in Th+3. The hy
drogen-like /-wave functions are only smaller than the kernel 
in ions with high external charge. Even in the trivalent ions, 
“external screening” prevents very large energy decrease of the 
/’-electrons.

The strong bands at 12700 cm”“1 (Ap-3), 15200 cm 1 (Pu+4), 
and 19700 cm“1 (AznOT) are presumably due to V4— 5/8, thus 
giving C5/ — 1900, 2300, and 3000 cm "1, respectively, if inter
mediate coupling effects are not considered. The bands at 
1 0000 cm“1 (ATp-3), 12300 cm“1 (Pu+4), and 14100 cm“1 (Am()+) 
are possibly due to 5/7. The values of J = 2, 3, 4, and 5 are 
represented in both 5F and 5G and give intermediate coupling 
effects. The high values of J (= 6, 7 and 8) in 3I< will also give 
strong bands. It is not possible to identify them, until methods 
for determination of ./ from crystal field studies are developed, 
cf. Satten.1"

* Cf. Meissner and Weinmann61, Rasmussen62 63 Klinkenberg and Lang38.
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/’-systems.

By direct use of Condon-Shortley’s method the following
energies can be determined:*
V7 115 F2 348 F4 2587 F6
6F 100 - 330 2860
6P 45 — 204 - 3861

4J7 105 — 231 — 1089

It is seen that the sextet terms are displaced 

1 ..
9

(10)

9 E° below the
corresponding /^-triplets. By Bacall’s method (using 10 E° as 
zero-point for the energy-scale) it is possible to calculate the 
following diagonal elements for the matrices:

Table 4. Diagonal elements for electrostatic interaction in /’5
ÍS = I and i) = 5

* Schuurmans54 has calculated the energies of quintet terms of /4 and sextet 
terms of /5 and /7 by means of Condon and Shortley’s method.

9 F3.....................5 11
(> p 05 10 .......................
*P.. .................... 33 F35 11

.................. 5 F1 50 F2 23 F3....................5 30
4m, .................... .................. 5 85 235 21

.................. 5 219 13/3........................5 21
ÍA’..................... .................. 5 188 16/35 30
4/ .................. 5 40 2
5 20 ........................
4 J ................ 5 50 115 30 ........................
4//.. .................... .................. 5 + 0 2
5 11
i //„........................ .................. 5 197 265 21
4H ........................ .................. 5 176 145 30
4 G .................. 5 1040/7 1 8/75 20 .......................
4g„, ................ .................. 5 1089/7 11/215 21
4G .................. 5 1 104 ! 22/35 30 .......................
4 F .................. 5 + 0 05 10 .......................
4F„. ..................... .................. 5 65 35 21
4 F .................. 5 76 _L 425 30 ........................
fpOf........................... .................. 5 + 1144/7 22 75 20
im, ..................... .................. 5 1781 7 202/75 21
ÍF,. ..................... .................. 5 0 + 44/35 11
4 P5 30 ....................... .................. 5 + 104 — 14 3
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Che seniority numbers 3 and 1 are not considered here. For 
instance the quartet terms with p = 3 have 9 El, thus much 
higher energy levels than the (p = 5) cases. The non-diagonal 
elements can be calculated individually from Racah’s theory. 
Some cases of interest for (he low-lying energy levels are:

(5^21 II -Ä3«) = 8 J 1 7 F2 + it-3
(5^20 1 l&o) -120 |z3 F2 4- 2 1 3 E3

(É#ii II = IO/39 F2 1 39 E3

(r/z20 Il ô^Sl) ■ -lß 1 2145E
i ’

â + ^-|/2Ï45E:

(t^io ||^2.) = — 1| 165 E3

(ÊP11 llt^äo) = 130 |/11 F2 — ||/ÏÏE3

(ID

With the same assumption (F1 = 17.36 F2, E2 = 0.06 F2, and 
E3 = 1.46 F2) the levels given in Fig. 1 are obtained from these 
values. Fig. 3 gives the observed spectra of the systems with five 
and more /’-electrons.

The distribution of the sextet terms agrees with S/n+++. The 
many strong bands in the infra-red are due to levels of 6H and 
6F, and the only other strong band at 24800 cm-1 is due to

— 6F7/2. Thus, F3 is increased only ten per cent as compared 
with Pr"r + + , if intermediate coupling or configuration inter
action' effects can be excluded. From the spectrum in the infra
red and fluorescence spectra Gobrecht23 found C4/ = 1200 cm”’1 
in Sm~~ + .

Since SnF has11 weak bands distributed at wave numbers 
over 17900 cm-1, some quartet terms must occur at slightly 
lower energies than expected from the parameter ratio F4 = 0.2 
F2 and F6 = 0.02 F2, as also in Pr : l_, where F1 (or F6) is 
relatively small. The calculations show that iM with the ./-values 
15 17 19 , 21 , ,,, , ,

> and 9 should be the lowest quartet term. 1 he positions
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Fig. 3. Observed spectra of f5-, f6-, f7-, /9- and /“-systems in aqueous solution.
Samarium (III),11 plutonium (III),14,22 europium (III),11 americium (III),18 gado

linium (111),11 curium (III),35 dysprosium (III),47 and erbium (III).48, 49

of the different levels of the multiplet can be found from the 
general formula:

!•:= + + 1)-L(L+1)-S(S+1)}, (12)

where Eo is the centre of gravity of the term and £ is £„/ multiplied 
by a constant characteristic of the term. These constants have 
been calculated for many /’"-cases by Rao.2’’

Hindman"“ has given the absorption spectrum of plutonium 
(III) aquo ions (cf. ref. 13, p. 574). Table 5 gives the results for 
the two low sextets and 6F, if their centres of gravity are 
assumed to have the distance OF3 = 6000 cm 1 and C5/= 2500
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Table 5. Calculated and observed sextet levels of Pu

Calc. Obs.

10000 cm—1 9900 cm-
10500 11100
12250 122—13200
13750 15000
14500 16600
17250 17900
36750 —)

cm- (as extrapolated from the other trivalent actinide ions). 
The bands al 19800, 21200, and 21900 cm 1 have only intensities 
about ten per cent of the strong bands and they are due to quartet 
levels. At the limit of the measured range, 28500 cm-1, an 
absorption begins which is either a strong /^-band (GP) or the 
much stronger [Em] 5 f5 -> [Em] 5 f' 6 d transitions. Stewart14 
gives shoulders at 31000 and 33500 cm“1 before a broad band 
at 40000 cm“ (see Fig. 3), but no definite conclusion can 
be drawn.

No information has been given on the absorption spectrum 
of Ain+4, which probably occurs in solid AznO2 or AmF4.

/•’-systems.

By direct diagonalization according to Condon and Shortley 
can be found :

7F

5L

150 F2

140

495 F, - 4290 F, J = |

(13)

It is seen that 7F has the energy — 15 F°. Using Bacall’s method, 
the terms with S = 2 and the seniority number v = 6 have the 
energies in Table 5, when 15 F° is used as zero-point of the 
energy scale.

Dan.Mat.Fys.Medd. 29, no. 11. 2
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(14)

Table 6. Diagonal elements of electrostatic interaction of
f6(S=2, V = 6).

5P
fi 11 = 6 E1 4- 0 E2 + 1 1 E3

6^20 = 6 + 858/7 + 11

c/^21 = 6 1131/7+18

6F2L = 6 195 15
:>G = 6 780/ 7 + 46 20
6G21 = 6 1683/7+11

6^11 = 6 + 0 - 3
^21 = 6 21 + 6
6^20 = 6 + 30 — 7

(iA21 = 6 + 135 __7

6 21 = 6 105 - 15

Some non-diagonal elements a re

II? h21) = 12 1/455 F2

(f/J20 I) 6 24 ,
^21) ' - 7I1/4290 F2

234
(r>M>o || 6 Au ) 7

7 |/ 132 F2

These values are used for the /’6-levels in Fig. 1. Fig. 3 gives the 
observed spectra of Fi/"r"u~ n’h and A/n 1S.

Gobrecht23 found Ci/— 1450 cm-1 in Hu ' 1 from fluo
rescence studies. The band of AnF at 12300 cm , identified 
as 7F0— 7F6, gives / — 3500 cm 1 when no intermediate 
coupling effects arc considered. The most characteristic features 
of the two spectra are the extremely weak bands (compared with 
the other lanthanides and actinides, respectively) due to the 
change of S from 3 to 2. But the bands at 25300 cm-1 in Eu+ + 
and 19900 cm 1 in Am have quite normal intensities.

The latter case is presumably due to the transition TF0 — 5L6. 
Since the distance between the two levels with ./ = 6 is not much 
greater than £5/, the excited state intermixes strongly1 with 7F(i. 
The only difficulty is the great change of ./ by the transition, 
since usually only |d./|<4 are allowed with reasonable pro
bability.“ 5Z4 and 5//4 are thus also possible explanations of the 
band in Eu~~~.
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The extremely narrow and weak bands of Eu+ + ~ at 19000 
and 21500 cm-1 have been investigated by Spedding, Moss, and 
Waller2' and by Freed, Weissman, and Fortress.28 According 
to Hellwege and Kahle29 the bands are due to transitions to 
5I)1 and 5I)2, while the very strongly forbidden transition to 5J)0 
has been observed at 17250 cm-1. Freed30 assumes the two 
first bands to be due to levels with ./ = 2 and 3. The occurrence 
of 5Z) seems peculiar; compare 'Fable 5. It can be connected 
with strong interaction with the 5Z)-term with seniority number 4, 
which has the diagonal element of energy 9 E1 + 143/7 E3. The non
diagonal elements with the two other terms are rather large:

(4^211 U j |/14E3 and || oMii) — y | 462 E3.

Nevertheless, none of the 5/)-terms should pass below 5L. The 
multiplet splitting of the term is strong, £ ~ £1/. as is often the 
case with the lowest of the two interacting multiplets with the 
same L and S9, and the interaction with the levels of the ground
state can be rather high, due to the low values of J.

The isoelectronic species Sm+ + was studied by Butement 
and Terry.31 Butement32 later discussed this and other divalent 
lanthanides and assumed that the broad and intense bands, 
giving the orange-red colour of samarium (II) salts, are due to 
[Xe] 4 f6 [Xe] 4 /'5 5 (I. As shown in the next section, divalent 
ions will have considerably less energy differences for this type 
of process than the trivalent ions.

/’-systems.

By direct diagonalization according to Condon and Shortley 
was found :

8S — 210 E2 — 693 F4 — 6006 F6 |
6/ — 175 — 504 — 4291 C — 0 for all sextet terms.|

If the energy of 8S, — 21 E°, is used as zero-point of the energy
scale, the following energies of the sextet terms are obtained by 
Bacah’s method :

2*
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(7 —■■*20 7 E1 70 E2 — 7 E3
•>/’ _7^20 - 7 + 260 + 4

6/) —77720 " 7 286 + 1 1

6// — 9 E1 + 9 E3

r> F —Ûr to “ 9 E1
6p.7 tl - 9 E1 — 33 E3

(16)

It is seen that analogously to the positions of d2- and </5-terms 
(ref. 8, p. 1363) the energies of 8S, 6I, 6G, 6I), 8H, 6F, and 8P in 
/'-systems are exactly opposite in value to 1N, 1I, 1G, 1J), 3H, 3F, 
and 3P in /^-systems. Thus, the relative position of 67 and 6P 
will depend1 on F6/F2 (or E^E3), but they will be the lowest 
terms highly over the ground-state 7S’. The spectrum11 of Gd+ + 
has bands only al wave numbers over 32000 cm and the 
most prominent of the weak, A S-forbidden bands are the group 
at 30000 cm \ which presumably is due to the high ./-values 
of 6/. Since C = 0, all multiplet splitting is due to intermediate 
coupling effects. If the assumptions of Fig. 1 are used, the energy 
difference 6/ 85 correspond to 106.7 F2, thus F2 is 365 cm
which agrees well with F2 = 325 cm 1 in Nd under the 
same assumptions.

'Flic information on the absorption spectrum of Cm has 
been quite divergent. Werner and Perlman33,31 investigated 
solution in 0.5 3/77(7, having a high (e maximally 48333 or 
1 1 1034) and broad band at 28400 cm 1 and a weak shoulder 
at 21700 cm- . The strong «-activity of the solution is liable to 
produce absorbing impurities, e. g. chlorine. Crane and Perl
man3'1 give the spectrum of 0.001 3 (1/Cm (C7O4)3 as a sleep ab
sorption limit at 40000 cm’”1, a shoulder (e ~ 400) at 35000 cm-1, 
and nearly no absorption below 29000 cm ’ (Fig. 3). It would 
be very interesting to know the reflection spectrum of curium 
(III) fluoride or another compound (oxide, sulphate) without the 
tendency of a molecular spectrum. The narrow bands of [Em\bf~‘ 
in the ultraviolet of Cm + have not yet been detected.

Freed and Katcoff36 studied the absorption spectrum of 
Eu ‘ in crystals. These authors concluded that the strong bands 
with vibrational structure in the range 25000—34000 cm 1 are 
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due to [Äe] 4/’7—► [Xe]4/65i/ or even lo transfer of electrons 
out in the crystal lattice, the opposite direction of the usual 
“electron transfer spectra’’. The real /^-bands of Eli' ! are 
presumably masked by the strong bands near 30000 cm-1.

On the analogy of the transition groups, it can be predicted 
that the energy difference between d- and /-electrons in a given

Fig. 4. The energy difference between the lowest terms of the electron configurations 
[Iim] 5/w—1 6 d and [Em]5fn. Filled circles from atomic spectroscopy.37,38 Up
ward arrows by minimum values from chemical absorption spectra (no transition 

observed in measured range of wave lengths).

lanthanide or actinide element will decrease with decreasing 
oxidation state. Fig. 4 shows the energy difference between the 
lowest term of [Em] 5 fn~x 6 d and of [Em] 5 fn in the actinides. 
The filled circles represent measurements from atomic spec
troscopy (for Th++ of Klinkenberg37 and for 77i + + + of 
Klinkenberg and Lang38). Open circles represent the results 
obtained from chemical absorption spectra discussed above. 
Upward arrows represent minimum values for the energy dif
ference. The value for protactinium (IV) is derived from the 
measurements of R. E. Elson.3'’ This oxidation state*  has broad 
bands at 35000 and 40000 cm-1 in 1 3/ H2S04 and at 40000 cm 1 
2 Al HCl()4.

It is seen from Fig. 4 that divalent actinides most probably 
will have strong absorption bands in the visible part of the

* Cf. the recent measurements by Fried and Hindman.64
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spectrum, due to the relatively small energy necessary to excite 
a 5 /-electron to a 6 d-state.

The internal /"-transitions are possible only because some 
states with opposite parity are slightly intermixed in the real 
states, which have no absolutely pure electron configuration.7’26 
These interactions are due to fields with no centre of symmetry2’ 
acting on the excited electron configurations of which the 
fn~xd discussed above are the nearest to the ground-state. 
It is remarkable that the intensities of the narrow /‘"-bands 
generally decrease with increasing distance between fn~xd and 
/", e. g. in the series Pr+ ++, Av/ :, Pm4 r~, Sm~ + . In the 
actinides, a similar trend is not only found at increasing atomic 
number, but especially with increasing ionization slate. This 
corresponds strictly to the energy difference between 6 d- and 
5 /’-electrons, as shown by Fig. 4. If this configuration interaction 
is the most important cause of intensity, it can be predicted that 
values of L which do not occur in the 1 (/-configuration, would 
exhibit weaker bands inter alia. This is perhaps the explanation 
of the anomalously low intensity of 1/6 in*  Pr as compared 
with 7'in .

/9-systems.

The electrostatic interaction in /'’ "-systems is completely 
equivalent to the /'"-systems. Since the intermediate coupling 
effects are quite important in the heavy end of the lanthanides, 
only some remarks will be made here about /'9- and /“-systems, 
which show some recognizable features. All the work done on 
these ions has been concentrated on the actions of crystal fields — 
Meeiian and Netting40 studied the sulphates of dysprosium, 
holmium, erbium, and thulium, Spedding41 the erbium (111) ion; 
Severin has measured the fine structure of several holmium 
(III)12 and erbium (III) salts,43 and Rosa44 dysprosium. Re
cently, Hellwege4" has treated the crystal field problems 
theoretically,**  and Giesekus46 especially the conditions in

* This band is not yet observed in Pr+3, if Hellwege65 is correct in as
signing 1Z)2 to the band at 16900 cm—1. F6 seems to be 64 times too small in the 
calculations of Trefftz.66 As will be discussed elsewhere, the corrected value 
(F6 = 0.0152 F2) satisfies the observed data. The supposed52 H,. of Tm+'-i at 
28000 cm—1 has been measured 12 times less intense than given by Hoogschagen.26 

** The influence of unsymmetrical crystal fields of citrate, ethylenediamine
tetraacetate and many other complexes of lanthanides has been investigated among 
others by Holleck and Eckhardt57.
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Table 7. Calculated and observed sextet levels of Dy

Calc. i Obs. (ref. 47)

2700 cm-1
5000
6500
7000
8600
8500
9900

10100
11400
12300
12800
25400
26700
27600

7600 cm~ 1
8100
9100

11000 •
12400
13200

25100
1 25800, 26300

27400

crystals of bromate enneahydrates. However, the atomic energy 
levels have not received much attention.

The dysprosium (III) aquo ion in solution was studied by 
Hoogschagen, Schölte, and Kruyer47 (see Fig. 3). The spectrum 
has strong bands below 13200 cm“1, due to and 6F, three 
weak bands at 21100, 22100, and 23400 cm“1, presumably due 
to 4J/, and strong bands in the range 25100—27400 cm“1 due to 
6P. Table 7 gives the calculated and observed sextet levels of 
Dy+ + + with E3 = 520 cm“1 and Cif ~ 1800 cm“1 (cf. Go- 
BRECHT23). No measurements of californium (III) have been 
published, but the 6F-bands must be distributed over most of 
the visible spectrum with C5/ about 4500 cm“1.

The absorption bands of Dy' also resemble those of 
Szn+ + + by their width, which can even compete with Pr+ 4 
and Tm++ + . In contrast to this, the bands of Eu+ + + and 
Tb+ + + are very narrow. These similarities between fn- and 
/14“n-systems are connected with the sensitivity to crystal field 
p er tu r b at i o n s.46

/’’-systems.

These systems, which are equivalent to /^systems, are exem
plified by Er++ + (a spectrophotometric study was made by Hoog
schagen and Gorter48 and by Moeller and Brantley49). The 
absorption spectrum of centurium (HI) has not yet been reported.
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Table 8. The lowest levels of Er

Without 
intermediate

coupling

Approx, inter
mediate coupling 

(eq. 2, 3)
Observed

4h3/2 ....................................... 6000 cm-1 6500 cm-1 6500 cm ’(ref. 50)
4/U/2 ....................................... 11200 11400 10300 (ref. 48)
4 j 15600 14300 12500

15800 14500 15300
4 I? 1 9400 19600 18300 191007/2 .......................................
4Glt/9 . . 21700 21000 20400
4Fn/2 .................................. 22600 21600 22200
2tfll/2....................................... 23900 25000 26500 (ref. 49)
2^9/2 ....................................... 25400 23200 24600
4/^ 26100 27500 27500
2^15/2....................................... 27900 27800 28100

Gobrecht“” identified the band at 15300 ein-1 in Er+^ + 
with 4/l5/2—4Z9/2 giving C4/ = 2350 cm 1 (while the /^-system 
Yb ' has C4/ = 2950 cm ). In opposition to most other 
spectroscopic evidence, Gobrecht maintained that transitions 
with decreasing values of ./ had the highest probability, thus 
giving the strongest bands. In the author’s opinion, it is rather 
difficult to find the highest levels of these inverted multiplets 
(from more than seven /’-electrons), because they have the 
lowest values of J. 'The high value of C4/ gives strong pertur
bations between the levels with the same ./. These will distribute 
the levels of 4F, 4 (7, and 2H, which are responsible for most of 
the visible bands of erbium (III) in a rather irregular way. 
Table 8 illustrates a reasonable choice of parameters, F2 = 400, 
Fi = 80, F6 = 8 cm , and C4/ = 2400 cm 1. Approximate cal
culations of intermediate coupling are also given. 4/L-)/2 is then 
decreased 800 cm ’. The levels with J = 9/2 intermix strongly.

fable 9 gives the found values of the electrostatic interaction 
5 , ,91parameter E3 = F.¿ + 2 F4 — F6, which determines the dis

tance between the multiplets of highest multiplicity. The values 
for Pr r and Tm : are given in ref. 51 and 52, for 1VJH + + in 
ref. 10, and for F 1 in ref. 1.

Besides crystal field studies,10’4”’46 further identification of 
the lanthanide and actinide terms will be promoted by atomic
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Table 9. The electrostatic interaction parameter F3.

f2........... . . . 7Jr+ + + 460 cm 1 U+ 4 ~ 780 cm
f3........... ... Nd+ + + 480 L7+ + + 500 cm-1[ A’p+4 610
f* ........... ... Pm+ + ~ ~ 500 A’p+ + + ~ 550
F........... . . . . Sm+ + + 480 Pu+ + + ~ 670
r........... . .. Dy+ + + 520
/H......... . . . . + + 580
z12......... . . . . Tm+ + + 630

spectroscopy, if a light-source can be constructed which ionizes 
the metal atoms strongly, at least to triply charged ions, but 
which docs not excite them very much over their respective 
ground-states. Then, the transitions from f'l~ys, and fn~1g 
to /'" will give strong emission lines, and the selection rules and 
Zeeman effect can be used for identification of the values of

Additional Note.

Satten38 has commented on the note.2 He is correct in pointing 
out that F4 — 0.2 F2 implies F6 = 0.03 F2. It might be pre
ferred to use the ratio F\ = 0.17 Z’2 and F6 = 0.02 F2, which 
give slightly decreasing FÅ integrals, as Racah 19 found in Th+ + . 
But such a change from the set F4 = 0.02 F2, F6 = 0.02 F2 
used here would have almost no significance for the numerical 
results derived here. The most important difference, in the author’s 
opinion, is between F6 being negligibly small, as really found 
in the strongly perturbed' La+ and probably1 also in U+4, and F6 
being considerably over half its maximum value, as in39 Th : and 
in the author’s opinion in most other lanthanides*  and actinides, 
rhe influence on the Racah parameters8 discussed above can 
be seen from this table :

also in Pr+3, see the note p. 22.

f4/f2 F 6/F2 E1 E- B3 EpE*

0.20 0.03 . . . . ... 19.58 F2 0.068 F2 1.12 F2 17.5
0.20 0.02 . . . . ... 17.30 0.060 1.46 11.9
0.17 0.02 . . . . . .. 16.60 0.070 1.40 11.8
0.15 0.02 . . . . . .. 16.08 0.077 1.36 11.8
0.15 0.01 . . . . . .. 13.85 0.069 1.66 8.3
0.15 0.00 . . . . ... 11.62 0.061 1.97 5.9
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Since the energy differences between terms with the same 
multiplicity and seniority number arc mainly determined by E3, 
while the differences between such groups are multiples of E1 
(see eq. 8), the weak bands due to lower multiplicity will be 
displaced towards higher wave numbers, compared to the strong 
bands of the highest multiplicity, by increasing ratio A1//:3.

The statement of Satten’8 that 2P1/2 of Nd+ + + cannot be 
placed so high as at 23400 cm 1 with any choice of Fk para
meters, seems objectionable. The set F2 = 340 cm 1 F4 = 55 
cm-1 and I1\. = 7 cm-1 is adjusted to Satten’s10 quartet terms 
and gives with Ci/ = 900 cm 1 the energy 2P1/2— 4l9/2 = 24630 
cm- without intermediate coupling. The interaction with 4/)1/2 
will then depress the energy ~ 600 cm ~ . The interesting sug
gestion of Satten ’8 that crystal fields intermix states as 2C9/2 and 
2P1/2 is made somewhat uncertain by the fact that the wave 
number of the 4273 A-line seems only to shift in different com
plexes due to change of the energy of the ground-state 4/9/2 and 
its crystal field splittings. The two last arguments have been ac
cepted by Satten in a private communication.
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Summary.

The atomic energy levels causing the narrow bands of lan
thanide and actinide elements are investigated. The case of 
Ak/+ , studied by Satten, is discussed with particular respect 
to the doublet terms, and the other systems with three effective 
/-electrons are considered. The electrostatic interaction of 4, 5, 
6, and 7 /-electrons is computed from Racah’s and simpler 
cases from Condon and Shortley’s theory. The relative positions 
of the multiplets agree well with the observed spectra, while the 
certain identification of the different levels is difficult, due to 
effects of intermediate coupling. In most of the actinide ions, 
the Lande interval factor C.-,/ is found to be rather more than 2
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in the corresponding lanthanide ions. The electrostatic in
teraction, which separates the terms, seems to be quite similar 
in the two (‘ases, except for an increase with increasing oxidation 
state, due to variations in effective charge. The transitions 
[Em] 3 fn [Fmt] 5 d, causing broad and intense ab
sorption bands, are used to estimate the very high energy dif
ference between 6 d- and 5 /'-electrons in the actinide ions (see 
Fig. 4). Some spectra due to molecular transfer of electrons are 
discussed and the spectrum of Cm is shown not to be the 
predicted /’-spectrum. Observed spectra of Dy+ + + and Er ‘ ' 
are compared with the theory. Several tables give numerical 
results, and especially Table 9 gives the values of electrostatic 
interaction in the investigated cases of lanthanide and actinide 
ions.

Chemistry Department A,
Technical University of Denmark, Copenhagen.
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Introduction.

In the theory of nucleons and mesons we deal with a situation 
in which the coupling between the two fields is not small.

It is, therefore, of importance for the treatment of such problems 
to develop methods more powerful than perturbation theory. 
The divergence difficulties inherent in current field theory neces
sitate a formulation of the non-perturbation approaches which 
allow for an incorporation of the idea of renormalization of mass 
and charge. In practice, this implies as a necessary condition 
that the formalism must be covariant.

The method proposed by Salpeter and Bethe [1], [10] for 
the treatment of the two-body problem is an example of such 
an approach. A general theory of a similar kind has been initiated 
by Schwinger [2]. In this theory, one starts from the consideration 
of certain combinations of vacuum expectation values of time 
ordered products of field operators, the so-called Green’s functions. 
In general such quantities obey inhomogeneous equations of 
motion. It can be seen that the study of the oscillating solutions 
of the corresponding homogeneous equations provides information 
about the energy and momentum values of stationary states of 
the system. According to Schwinger, these homogeneous equations 
apply to scattering problems as well. By his method, equations 
of the Bethe-Salpeter type can be established without reference 
to the limit of no interaction. However, it seems rather difficult 
by means of this kind of approach to obtain a clear under
standing of the nature of the wave functions which obey the 
homogeneous equation.

Partly to overcome this problem, Heisenberg [5] and 
Freese [4] have proposed to start directly from a definition of 
the wave function for the problem. In the general formalism 

1*
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developed by Freese it is shown how, for each state of the system, 
one can construct an infinite set of wave functions from free 
field Green’s functions and matrix elements of time ordered 
products of field operators. The construction is such that the 
discontinuities in the matrix elements are compensated by 
corresponding discontinuities in the free field Green’s functions. 
Consequently, Freese’s wave functions obey homogeneous equa
tions of motion. The infinite set of wave functions constitutes a 
generalization of the Fock representation in the configuration 
space for free fields to the case of interacting fields. For some 
problems one can substitute the infinite set of wave functions 
by essentially one function, only. The equation obtained for this 
function is of a similar structure as the equation of the Bethe- 
Salpeter type following from Schwinger’s theory, but is in general 
not identical with Schwinger’s equation. One reason for this 
may be found in the fact that free field concepts enter in Freese’s 
representation.

In the present paper, an attempt is made at modifying the 
ideas of Heisenberg and Freese so as to unify their theory with 
that of Schwinger, and thus to combine the advantages of both 
formalisms. To this purpose, we employ the technique of 
variation of external sources developed by Peierls and 
Schwinger [6]. In Section 1, a survey of this method is given 
in a form which is convenient for our purpose. In Section 2, 
we relate to any state of the system a functional of the sources. 
The variational derivatives of this functional with respect to the 
sources define an infinite set of amplitudes. These are shown 
in Section 3 to generalize the Fock representation to non-linear 
fields. No reference to free field concepts is made in the de
finition of the state vector amplitudes. Several simple properties 
of the Fock representation are maintained in the non-linear 
case.

The problem of the construction of the scalar product of two 
states given in this configuration space representation has not 
been solved. Until further progress is made one must, therefore, 
use the term representation with some reservation. The equations 
of motion, in the configuration space representation, are derived 
in Section 4. Finally, in Section 5, a preliminary discussion is 
given of the one-nucleon problem and of the two-nucleon problem. 
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The corresponding equations of motion become identical with 
those following from Schwinger’s theory.

Much of the discussion given by Freese can directly be taken 
over to the present formalism and is not repeated here. In parti
cular for the discussion of scattering problems, the reader may 
be referred to Freese’s paper.

All considerations below are of a highly formal character in 
so far as we have completely neglected the divergence difficulties. 
However, the renormalization theory, for instance in the form 
given by Fällen [8], can easily be incorporated in the present 
formalism.

The author wishes to express his gratitude to Professor 
C. Moller for much encouragement and many stimulating dis
cussions during the performance of the present work. He lias 
also profited greatly from numerous discussions with the members 
of the CERN Study group and the guests of the Institute for 
Theoretical Physics, University of Copenhagen. In particular, it 
is a pleasure to thank drs. R. Haag and N. Hugenholtz for their 
kind interest and helpful comments on the subject of the present 
paper. Finally, financial support from “Statens almindelige 
videnskabsfond’’ is gratefully acknowledged.

1. The field equations including coupling to 
external sources.

With the aim to illustrate the general method we con
sider the example of a spin one-half field (nucleons) coupled to 
a scalar neutral meson field. With a suitable symmetrization of 
the interaction ternis, the equations of motion are

(d + M) y)0 (x) + (2/2) { u0 (x), y>0 (x) } = 0,

(d + M) (x) + (2/2) { u0 (x), ÿ>0 (x) / = 0,

(—  + m2) u0 (x) + (2/2) [ÿ0 (x), ip0 (x)j = 0.

(1-1)

Here, 2 is the coupling parameter, and ft and d denote

0 = d/dx^, $ = — yj d/dx^,
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where yl/t is the transposed of the matrix y^. The index /i runs 
from one to four and = (aq, .r2, æ3, .r4), .r4 = it. As usual, 
ÿ0 is defined in terms of y *,  the Hermitian conjugate of ip0, as 
Ÿ’o — The units chosen are such that A? = c = 1.

As mentioned in the introduction, we employ the method of 
variation of external sources developed by Peierls and Schwin
ger [6]. Therefore, we introduce external sources for all three 
kinds of fields and thus modify the equations (1.1) to

(d + M)y> (x) + (2/2) { u (x), y> (.r) } + <p (.r) = 0, 

0 + 3/) (a-) + (2/2) { u (æ), ÿ (.r) } + <p (.r) = 0, 

(—  + n?2) u (,r) + (2/2) (a?), (æ)j + I (.r) = 0.

(1.2)

By omitting in these equations the subscript attached to the field 
operators in (1.1) we distinguish the source-dependent field 
variables from the usual ones describing the closed system. In 
the following, we assume that the sources vanish for both | x | 
and |/| tending to infinity. With this restriction the equations
(1.2) can be supplemented by a boundary condition which 
requires that the source-dependent field operators become 
identical with the usual source-free fields in the infinite past. 
Considering such solutions only we can regard the field variables 
as functionals of the sources. As no other solutions of the equations
(1.2) will be considered in the following, it is superfluous to 
discriminate by any label this retarded solution from other 
possible ones.

We take /(a-), the external source of the meson field, as a 
c-number. Of course, one could also treat the external spinor 
sources as c-numbers. However, this is not what we shall do. 
In older that the external sources be useful, one should take the 
spinor sources as the analogue of c-numbers for the fermion 
case, i. e. as quantities such that

(<A (x), (p (x')} = {99 (x) , (x')} = (x), <p (x')} = 0, (1.3)

and
(99 (x), y>0 (x')} = (x), y>0 (x')} = 0

{<P v>0 (x')} = (99 (x), y>0 (x')} = 0, 
(1.4)



Nr. 12 7

while ep and y commute with I (and of course with any other 
c-number). For the further specification of the manifold of pairs 
of spinor sources it is advantageous to write <p and ep in the form

<P (æ) = 0of (.r), 

ç? (,r) = 00 g (x),
(1.5)

where 0O is a constant operator which commutes with f and g 
and anticommutes with y0 and ÿ'o. Hence, due to (1.4) and
(1.3),  f and g commute with ip0 and ÿ0 and satisfy

(æ)> f O')} = \ f O) - 9 O')} = \9 O)> .7 O')} = 0 • (1 -6)

As is well known, essentially only one such quantity 0O exists, 
viz. the parity of the difference Zl AT between the number of 
nucleons and the number of anti-nucleons. In terms of the held 
operators, Zl N is

zhV = jj W 0> 0, V’o 0] æ- G-7)

We choose 0O as

0O = (— 1)4N = parity of ZLV, (!•$)

thereby normalizing 0O so that 0q = 1 and 0O ¡ 0 > = I 0 >, 
where | 0 > is the vacuum state of the source-free system.

Corresponding to any pair f, g, we define the domain of pairs 
of sources obtained by allowed variations as the totality of 
pairs of the form f + ôf, g + ôg, where ôf and ôg are infinitesimal 
and anti-commute with f and g, i. e.

(W)> f(x')} = {ôg (,r), /(.r )) = 0, 

{<VO)> g (æ')} = {ôg (æ), g (x')} = 0.
(1-9)

It should be noted that (1.9) is not a consequence of (1.6). For 
any pair f, g we now require the manifold of allowed variations 
to be so large that we, from a relation of the type

[ôf (x) K (.r) ô g (.r) L (æ) j d*  x = 0, (1-19)
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holding for all pairs of allowed variations, can conclude that 
K (íü) and L (x) vanish identically. In (1.10), K and L are con
sidered as quantities of the same nature as f and g.

This last mentioned property of the spinor sources, together 
with (1.6), is all we need for the formal calculations below. The 
consistency of all requirements is demonstrated in Appendix I 
by the construction of an example of a possible domain of pairs 
f, g. As shown there, one can imagine the quantities f, g, or as 
we shall say, the f-nuinber pairs, to be infinite matrices. It should, 
however, be emphasized that the f-number pairs will be treated 
as a kind of numbers and not as operators. In other words, 
all matrix elements arc matrix elements in the space of the 
source-free operators only, and are, for the rest, quantities of 
the same nature as the f-number pairs. Thus, corresponding 
to (1.5) and the fact that the parity of the vacuum state of the 
source-free system is unity, we write

<0 \(p(x) I = /-(x)<0 I 0O I = /(æ)<() I y>>. (1.11)

In this relation | can be any state.
By means of the field equations one can easily see that the 

spinor sources anticommute with the source-dependent spinor 
fields and commute with u. This statement is based on the 
essential property of the source-dependent fields that and xp are 
odd functionals of quantities which anticommute with the spinor 
sources, while u is an even functional of such quantities. Thus

{? (x), (æ')} = {? (æ), O')} = °>

O (x), xp (æ')} = 0 (x), xp (æ')} = 0.
(1.12)

Similarly, it can be verified that allowed variations ôqp and dtp 
anticommute with xp and xp and commute with 11. By allowed 
variations we here understand variations of the form Ô99 = 0oôf 
and ôcp — &odg, where df and dg satisfy (1.9).

Conversely, we could also have started from (1.12) instead 
of (1.4), as (1.4) follows from (1.12), the field equations (1.2) 
and the retarded boundary condition.
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One further remark may be useful here. It can easily be 
verified from (1.2) and the boundary condition that the canonical 
commutation relations

\Va (æ> 0 » Vß (x', t)} = (yi)aß ô(x — x) I

[ll (x, t), u (x', Z)] — i ô (x — x')
(1-13)

hold in the source-dependent case also.
We can now formulate the following main theorem as regards 

the dependence of the fields on the sources. For any infinitesimal 
variation ôl of the meson field source, and for any pair of allowed 
variations ôcp and ôq> of the spinor sources, the corresponding 
variations of the fields are given by

ôïp (x) — i [Ç ÔW (xz) d*  x', ip (x)],
• -----00

ôïp (x) = i [Ç ÔW (x') d*  x', ïp (x)], 
J—oo

ôu (x) = i \ ô W (x') cZ4 x', u (x)],

(1.14)

where the infinitesimal operator óT is

ô VV (x) — ôïp (x) ïp (x) + ip (x) ô(p (x) + u (x) ô I (x) . (115)

The statement (1.14) is included in the general variation 
principle for quantized systems formulated by Schwinger [6]. It 
is, however, quite easy to prove (1.14) directly from the field 
equations. Evidently, (1.14) is in accordance with the boundary 
condition. Therefore, we only need to show that the variations 
(1.14) satisfy the varied field equations. For instance, from the 
first equation (1.14), we get

(0 + AZ) ôïp (x) = i[G W (xz) d*x',  (ø + M) ip (x)]
•---- 00

+ [( d3x'ô W (xz, Z), pi ip (x)].
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which by the field equations, the properties of the sources, and 
the canonical commutators becomes

($ + 47) (x) + (Â/2) {u (x), (x)}

+ G/2) {<5u (x), ip (x)} + dtp (x) = 0.

This is precisely the equation one would have obtained by 
varying the first equation (1.2). In a similar manner one obtains 
the other varied field equations, and this verifies (1.14).

In concluding this section we shall reexpress the contents of 
the variational equations (1.14), using the notion of variational 
derivatives. Consider a functional, ø [cp, <p, I] say, of the sources. 
Assume, that one can write the variation of this functional in 
the form
ô (P [(p, (p, I] = Ç (ôf (x) A (x) + d q (x) 7? (x) + ó /(x) C (x) ) d4x = 0 , 

holding for any infinitesimal allowed variations of the sources. 
Then, the quantities A, B, and C are uniquely determined. This 
follows from the conclusion drawn from (1.10). We can thus 
define A, B, and C as the variational derivatives of the functional 
0 corresponding to variations of f,g, and 7, respectively. It is 
convenient to introduce the notation

A (x) = ô(P [cp, (p, I]/ö/'(x), 

B (x) = ô<t> [(p,ïp, I]/ôg (x),

C (x) = Ô0 [(p, cp, I]lôl (æ) •

It should be emphasized that, for instance, d/'(x) and A (x) do 
not commute in general. The variational derivatives introduced 
here are thus left-hand derivatives. In a similar way, one could 
introduce right-hand variational derivatives.

As above, let | 0 > be the vacuum state of the source-free 
system and let | V7 > be any other source-independent state.
From (1.14) we get

X< 01 [ip (x') ô <p (x') + ô(/(x') ■ ip(x') + ôl(x') • il (x') , V’(x)] \ d/yd4x'. 
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As usual, e (,r' — a:) is the step function (/' — 0/1 T — t \. From 
this equation we infer, using the properties of allowed variations 
and relations like

< 0 I ô tp (x) — ôf (x) < 0 I 0O == ô f (x) < 0 (1.16)

that

. (5 ( 0 I ip (x) I 
àgCv')

.ô(Q\ip(x)\P 
ôf(x')

. ô < 0 I ip (x) | P) 
ÔI(x')

1 -j<o|{ÿ(x),^(æ)}|y>,

1—----— < o I [u (x'), ip (x)] IV7).

(1.17)

In a similar manner, one may obtain expressions for the vari
ational derivatives of matrix elements of the other field variables. 
The minus sign on the left-hand side of the second equation 
originates from the reordering ïpôcp = — ô(pîp necessary to obtain 
the left-hand variational derivative with respect to f.

2. Generating functionals for ordered products 
of field operators.

The ordered products considered in this section can all be 
constructed from one operator T which, as we shall see, is the 
generator of the time ordered product as defined by Wick [9].

i) The lime ordered product.

We introduce an operator T by the variational equation

(2.1)

and the boundary condition T — 1 in the limit of vanishing
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sources*.  The infinitesimal operator <5 IV, defined by (1.15), is 
closely connected to the total variation of the operator

* For a more general discussion it might be of advantage to consider another 
solution of the variational equation (2.1) corresponding to the boundary con
dition T = S for (p = <p = I = 0, where S is the S-matrix for the closed system. 
All considerations in the following remain valid for this choice of solution.

VV (x) = ip (.r) (¡o (x) + (æ) (æ) + I (.r) u (x). (2.2)

It follows from the properties of the sources that

¡ôlV(æ'), <p(æ)] = [ôIV(x'), ç>(æ)] = [ôW(x'), I(x)] = 0, (2.3)

whence, by (1.14),

(2.4)

We shall verify in detail that the solution of the variational 
equation (2.1) is given by 

where P orders the IV-factors in the reverse sense of Dyson’s [3] 
chronologically ordering operator. Thus, if antedates x^v\ 
then IV(x(v)) appears to the right of IV (x(jU)) in the P-ordered 
product. To prove (2.5) we first consider the variation of an 
ordinary product of IV-factors. By (2.4) we get 

ô { IV (V) IV (x") ... IV (x(n))}

= i (j¡<5 IV (.r) dx\ IV (xz) IV (xzz) ... IV (x(n))

+ i IV (x') ( ô IV (x) dx\ IV (xzz) ... IV (x(n))

-T . . .
+ i IV (xz) IV (x") ... IV (x(n)) [ \ d IV (x) dx ) + 

\<(H) / (2.6)
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+ ô W (x') . IV (æ") ... IV (x(n))

+ . . .

+ IV (æ) IV (x") ...ÔW (æ(n)) 

(2.6)

where we have collected the contributions from the commutators 
between ó IV and IV in an obvious manner. The complete sym
metry of the P-ordered product allows us to write the variation 
of the general term in series (2.5) in the somewhat simpler form

i ■ Ü
— x ♦
— A dx'

, oo
drr(n) P (IV (x') IV (x") ... IV (x(n))}— oc

tQ0 ,.X
. . . \ dx(n) \dxP{ôW (x) IV (æ) . . . IV (.?">)}9 — x •- X • - X

c°°— i \ dx' . . . \ dx(n)P{\V(x') . . . W(x(n))} • \ <5IV (.x) dx
v— ce ♦'- X •’- X

/. OC ,«o°
+ n \ dx1- X ’ . . .\dx(n) p{ô W (x') -W(x") . •’- X

If we introduce this expression into the variation of T obtained 
from (2.5), we see that the contributions from the first and the 
third term on the right-hand side of (2.7) cancel, and that the 
sum of the remaining terms equals the right-hand side of (2.1). 
This verifies (2.5) as this expression obviously is in accordance 
with the boundary condition.

All allowed variations commute with IV. Thus, by (2.5), 
also T commutes with these variations and we can write (2.1) 
in the form

ô T (2-8)

Consequently, for any source-independent state | !P>, we have 
by (1.16)
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. ó < O I T I V ') 
ôi<X>

= <()! Tu (x) I Y7>

.d<o I ri y> 
ô<7(.r) = <0| T ip (x) |^>

.¿> < 0 I T\ W) 
àf(x} = <0 I Tip (x) I ’/7>.

(2.9)

From (2.8) and the variational equations (1.14) we get for the 
variation of, for instance, the right-hand side of the second 
equation (2.9)

— i

,.xco

— i
'— oc

+ z
'x

whence

d <0 | Tip(x) |V7> =

i ( ô I (x') < 0 I T u (x') y (x) 1 V7> + ( <51 (x') < 0 I Ty> (x) u (x') | *Py
• 'x t)—co

\ ôg (x') <0 I Ty?(x')y(x)| V7) — Ç 0<7(x')<0 1 Tip(x)y>(x')\ T'y 
*X * oc

pOO pX

\ ¿/(x'XO I r^(x')7’(x) I V7> — \<5/“(x')(0 I 7>(x)V(x') i T'y ,
*-— oo

.ó<0lT^(x)| V7) 
ôl(x') = <01 r 7’(iz(xz) v^(x)) I T'y

. ö (0 I Tip (x) I V7 ) 
Óí/Cx') = < 0 I T T (ip (x') ip (x)) I V7y

. ô ( o i ry (x) i V7 y 
~tfW) = (0\T T (y) (x') ip (x)) I Y7 >,

(2.10)

where T ( • • •) designates Wick’s time-ordered product. The 
expressions (2.9) and (2.10) are special cases of the general 
formula

. Ô . ó . ó . ô 
ôl(x') ÔI(x(k)) ôg(y') àg(y(lY)

<0|r r(u(x') • • • u(x(^)y(i/') • • ■ipÇy^yy’Çz') • • •ip(z(-™)')) ¡ Y7),

(2.11)
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which reveals T as the generator of the T-product. To prove 
(2.11) denote, for fixed values of the space time points, x' • • • æ(A) 
y' • • z' • • -z{m\ the chronologically ordered sequence of the 
same points by aq, x2, ' ' ’Xn, n = k + I m. Further, let / 
denote any of the field variables xp, xp, and u. With this notation, 
we have

<5 <0[ T’z(æ1)-"Z(æ»)l’f'> =

-i<0| T ( ó W (a?) dx i (x¿ • • •/ (aq) | ,
«J XI

-¡■<0 T 7 (æl) <5 W (æ) dx ■ ’ '7 (xn) 1 ’O,

- ' ■ ■ ■
,iXn

-i<0 T 7 (æi) • • • 7 (xn) \ <5 vv (a?) dx\xP'),
V--- 00

in virtue of (2.1) and the variational equations (1.14). If we 
displace all source variations to the extreme left we get 

<5<0| 7'Z(x,)---z (.r„) |!P> 

- i{åg (æ) (±) <0 I T p{y> (x) X (æt) • ■ 'X (æ„)} l Sz> dx,
•- 00

+ z ( ô/(x) (±) (0\ T P{xp (a?) / (aq) • • • / (ar„)} ¡ W) dx,
<- 00

<0 I T P{u (a?) / (aq) • ■ • % (aq)} | *P>  dx, 

(2-12)

where P is Dyson’s chronologically ordering operator. The (±) 
factor in the two first terms on the right-hand side of (2.12) is 
the parity of the number of permutations between the nucleon 
operators and the variations of the spinor field sources. Evidently, 
the number of these permutations equals the number of per
mutations of spinor fields required to bring the field variables xp 
and xp, respectively, from the place indicated in (2.12) to the 
position required by the P-operator. Thus, (±) is the change 
of sign characterizing Wick’s T-product as compared with 
Dyson’s P-product and, hence,
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z d <0 | T T (u (x') • • • (z(m))J I
.,00

\ ôg (x) <0 I T T (y) (x) a (x') - ÿ | V7) dx,
•---- 00

ôf (x) <0 I T T [y> (x) u (x') • • • y> (z(m))) 1 V7) dx,

,00

+ \ ó / (x) <0 | T T (n (x) u (x') • ■ • ÿ (z("l))) I dx. 
•------00

(2.13)

The minus sign is due to the occurrence of ôqp to the right of y 
in the expression for ô W. The proof of (2.11) is now easily 
completed by an induction argument.

ii) Matrix elements of normal products.

The formula (2.11) demonstrates the convenience of Schwin
ger’s formalism for the introduction of ordered products of field 
operators, but adds nothing new. The normal product*,  however, 
is not defined for non-linear helds and it is, therefore, more 
interesting that we by this formalism can give a general definition 
of the normal product. The detailed discussion of the normal 
product as introduced here, and in particular the proof that 
this product is a generalization of that introduced by Wick for 
free fields, will be given in the following section.

* By Wick [9] denoted as the S-product. To avoid the use of the letter S for 
too many purposes we shall, henceforward, use the term N-product.

The generator for the AAproduct is the operator N which is 
connected with the /’-operator by

We shall regard
N = <0 I T I 0>—1 T. (2-14)

• z

(2.15)

Ô
ÔI(x^)

. ô . Ô /_._J \
lôg(y) lôg(y(l))\ löf(z)j

P (x' • • • x’

as the matrix element between 
A’-ordered product of the field 

the states <0| and | xPy of the 
variables corresponding to the
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space-time points indicated1. The relation (2.14) implies

and
<o i N i py = <o i T |o>~1 <01 T ! py (2.16)

<oi t|o> <o|A¿|¥/> = <o|T¡y/>. (2.17)

From these two expressions two relations originate between the 
matrix elements of TV-products and the matrix elements of T-pro- 
ducts. To express these relations in a compact form we introduce 
some conventions about notation.

Let P, , • • • %<k denote some of the space-time points
x', x", • • • x^. By

• • -i(x) (2.18)

we denote the sequence of space-time points obtained by omitting 
the space-time points P', • • • from the sequence x , x", • • • x^k\
Thus, for example, x', x", x", x"" ; x", x" = 
way, we introduce symbols such as y', y", • 
and z",

x', x"". In the same

We also introduce a notation for matrix elements of T-pro- 
ducts similar to that we use for matrix elements of 2V-products. 
For instance, we write the right-hand side of (2.11) as

(2.19)

If I Py is the vacuum state, we denote the vacuum expectation 
value of the T-product by

(x' • • ■ xw I y' • ■ ■ yw ]z' ■ ■ • z(m>). (2.20)

For completeness, we note that, in the special case k = I = m — 0, 
we write

<o| T\py = r^(| I), 
<o i iv|py = P{\ I).

(2.21)

1 It is evident how to generalize this definition and the formula (2.11) to 
matrix elements of the Ar- and T-products, respectively, between any two (source
independent) states of the system.

Dan.Mat.Fys.Medd. 28. no. 12. 2
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Also, with the notation (2.20), we have

<0| T|0> = r0(| )). (2.22)

As mentioned in Section 1, matrix elements of field operators 
are in general not c-numbers. This introduces some minor 
complications in the following considerations, but is the price 
we have to pay in order that all three kinds of sources appear 
in a symmetric manner in the variational equations (1.14).

Still, any To-function with an even total number of spinor 
space-time points is effectively a c-n umber in the theory. Any 
/'-number commutes with such “even” 7'0-functions. The general 
relation for, for instance, åf is

ôf To (x' •••!{/'••• yil)\z' ■ • -z(,n)) I
(2.23)= (-I

and is easily proved by the use of (1.16) and the anti-commu- 
tativity of ô(p with all spinor fields. A similar relation holds for 
ôg, f, and (j. Hence, even 7’0-functions commute with any 
functional of f and g and, in particular, with any other 7'0- 
function. I'll us,

[ (a' • • • i if • • • y(Z) I z • • • z(m)), 7’0 (aq • • • | y. • • • y} i z± • • • z^)] = 0

if Z + /i is even. The variational derivative of this equation with 
respect to g (y) gives, for the case of I + m being odd,

I 7'0 (a' • • • Iyy' • • • y(Z) !:'■■■ z(m)), 7 0 (aq • • • I yi • • • y¿ |zx • • -zfl)\

{T0(x'^ • -\y'- • -fl:'- • ■z(m)),7’0(z1- ■ -\yih - ■ -yfzA- • -z/z)} = 0.

fhe appearance of an anti-commutator is a consequence of the 
anti-commutativity of ôg with odd 7’0-functions. The first term 
vanishes and we infer that two 7'0-functions, both having an 
odd total number of spinor space-time points, anti-commute. In 
particular, 7’0 (| |) commutes with all matrix elements and



Nr. 12 19

(Mlyl), Mi?/'I)} = o, 

(MIj/I), MM} = 0, 

\ ^0 ( I I z) > 7 o ( I I z )} = O .

(2-24)

We arc now prepared to prove the first of the relations men
tioned above. From (2.17) follows

(2-25)

where the summation is taken over z = 0, 1, ■ • -k, Å = 0, 1 , • • •/, 
and — 1 , • • -m while the £’s run independently over all the
space-time points xf • • -x(k\ etc. The factorials take into account 
that we sum over all permutations of the sets g • • -, r/' • • • and 
£'•••. Apart from the factor (±) in front of the general term, 
(2.25) is easily recognized as the usual formula for the iterated 
derivative of a product, viz. the product on the left-hand side 
of (2.17). Thus, (2.25) is correct if we interpret the sign factor 
(±) correctly. From (2.23) it follows, however, that the factor 
(±) is the parity of the permutation of spinor space-lime points 
involved in the substitution

r' • • • .M; r • • • ^\y' ■ • -y(Z); • r^\z' • • • z(m); C' • • • C(^).

(2.26)

To illustrate (2.25) we note a few examples which also later 
will serve for reference:

2*
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Tw(x'x'f\ I) = To(| I) T(x'x"\ |)+ r0(æ'| I) I) I
(2.27) 

+ T0(æ"| I) ^(æ'[ |) + T0(æ'æ"||) ’¿'(II) I

l?/l) = 7o (I I) ^(æ lyl) + To (x i I) ’¿'(lyl)

+ To (lyl) I I) + To (x |y|) ^(1 I)
(2.28)

T^x\ \z) = To(\ I) ’¿'(æl |z)+ 70(æ| I) W(\ |z)

+ To(| |z) ^(æl I) + To (x| |z) V7 (I I),
(2.29)

and, finally, to illustrate the (i) factor,

TipOu'y"= r0(| I) ï7(I y'.y" I) + To (Iy'I) (ly"l)

ï1o(ly,,l)^(l.y'l)+ïo(!y'y"l)^(ll).
(2.30)

The formula (2.25) may be looked upon as a recursion formula 
which implicitly expresses the ’¿'-functions in terms of matrix 
elements of T-products. The resulting formula may, however, 
be obtained directly from (2.16) if we introduce the functions

(2.31)

where
C(| I) = <0| r|0>-’. (2.32)

By an argument similar to that by which (2.25) was obtained, 
we get from (2.16)

W (.r' • • • I y' • • • y(/) | z' • • • z(m))

= yj_ y 1 y i y
(±) c (r ■ • • i y' • • • rp i r • • •

(.r' • • • x(&); \ y' ■ ■ ■ r,' • • • y(2) \z' • • • z(m); ■ C(^). 

(2-
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An important property of the ’¿'-functions follows from (2.14). 
In the special case where \ XP') is the vacuum state of the source- 
free system, we have <0 ) N | 0> = 1, independent of the sources. 
Hence, all ’¿'-functions vanish, except the one corresponding to 
A = Z = zn = 0. Thus, in this case, (2.33) reduces to

— ÔQkÔQiÔ()m,

and this is a recursion formula expressing the C-functions in 
terms of vacuum expectation values of T-products1.

3. Properties of matrix elements of ZV-products.

In the Fock representation [7] in configuration space for free 
fields, one characterizes a state of the system by an infinite set of 
many-particle wave functions. As long as one considers free fields, 
this representation may in a trivial way be extended to a multiple 
time representation. If we use the notion of a normal product, 
we can write the many-time wave functions, or as we prefer to 
say here, the state vector amplitudes, in the form

Vz(æ'---æ(fc)|/--- y(i)|/---z(m)) I
= <0 |A3 * * * 7(u(.r/)---iz(æ(/c))v’(y')---^(y(Z))V’(2')---VJ(2("l)))l J

The results of Wick’s discussion of the properties of T- and 
¿¿-products of free field operators are expressed in the Appendix

1 The formula (2.34) could also have been obtained directly from the identity 
C(||) To(||) = 1.

In the following, the formulas (2.25), (2.33), and (2.34) will 
serve as a basis for the discussion of the properties of the matrix 
elements of ^-products. It will be shown that these expressions 
generalize the algebraic relations between T- and ¿¿-products for 
free fields to the case of non-linear fields.
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II with the aid of a notation which is convenient for our purpose. 
In Section 2, we derive relations connecting matrix elements 
of the normal product of field operators for non-linear fields 
with matrix elements of T-products. If we compare the formula 
(2.25) with Wick’s formula (Ap. II. 11), we see that the iV-product 
for non-linear fields, as defined by (2.15), is a generalization 
of the 7V-product for free fields, as the formula (2.25) in the 
limit c/; = = / = z = 0 reduces to the corresponding formula for
free fields given in the Appendix II.

'fhe equation (2.15) may, therefore, be taken as the general 
definition, valid also for non-linear fields, of the state vector 
amplitudes which represent any given state | V7). After a discus
sion, in this section, of some of the simplest properties of the 
state vector amplitudes, we shall in the following section derive 
the equations of motion in this new representation. It will then 
be seen that the state vector amplitudes are closely connected 
to the “wave functions” which enter in the homogeneous equa
tions of motion following from Schwinger’s theory.

The following simple properties of the state vector amplitudes 
are independent of the magnitude of the coupling constant.

i) 'fhe ground state of the source-free system has the represen
tation y^dl) = 1, while all other amplitudes vanish. As already 
remarked at the end of the last section, this follows in a trivial 
way from the definitions (2.15) and (2.14). The fact that the 
simplest state of the system has the simplest possible represen
tation is in accordance with the expectation that the present 
formalism provides us with a convenient description of the 
lowest lying levels of the system.

ii) It is easily verified from (2.25), by means of well-known 
properties of T-products, that the state vector amplitudes are 
symmetric functions in all meson coordinates and anti-symmetric 
in as well all nucleon coordinates as all anti-nucleon coordinates. 
So far we have not introduced ^-functions such that we can 
speak about symmetry properties when interchanges of, for 
instance, nucleons and anti-nucleons are involved. It is, how
ever, evident how one could generalize (2.15) to cover such 
cases also. One would then obtain state vector amplitudes which, 
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in the general case, possess all the well-known symmetry pro
perties of the free field wave function (3.1). The most direct way 
to see this is to observe that we formally can use the relations

1 làg(y')’

I i -å - _í-d » = o 
l dgty')’

_ i = 0 
l ó/■(/)■ <W')J

(3.2)

and commutativity of zd/ólwith all variational derivative operators 
when the objects of operation are matrix elements of T- and 
Ar-products. To this remark we shall come back in the next 
section. To illustrate (3.2) we evaluate

(— i <01 T T(y') • ■ ■ V’ (y(Z))) I y/>

= <0 I T T (ÿ (r) y (y') • • • (y(0)) | V7 >

= (— Oz T^(\y' • • • y(Z)l*)-

Here we have used (2.13) and the symmetry properties of T-pro- 
ducts.

iii) The state vector amplitudes are continuous functions of 
the coordinates. This is not quite trivial, because matrix elements 
of T-products are, in general, discontinuous functions. The 
discontinuous character of the 7’^-functions is made apparent 
by the d-terms in the equations of motion for these functions 
(Ap. III. 3, 4 and 5). It can, however, be seen that the application 
of the differential operators occurring in the field equations to 
^-functions does not give rise to such ô-functions. This can, for 
instance, be proved by induction using (2.25). In the following 
section, we find that the V7-functions satisfy homogeneous equations 
of motion, and this constitutes another verification of the con
tinuity of these functions1.

1 The first derivative of the ^-functions with respect to a meson coordinate 
is also continuous. This difference between spinor field variables and meson field 
variables reflects the difference in the equations of motion for the two kinds of 
fields, the nucleon equations being of the first order, while the meson equation 
is of the second order.
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iv) If the state [ V/> represented by the infinite set of state 
vector amplitudes is a stationary state, corresponding to the 
eigenvalues Pfl for the total energy momentum vector of the 
closed system, then, in the source-free limit, the ^-functions 
oscillate according to

W (x • • • I y' • • • I z • • •) - exp z P>L Xfl. (3.4)

Here, the Xfl's are any “center of gravity” coordinate. For in
stance, one can take XfJ as the average value of the coordinates

• • ■ y'/t, • • • z^, • • •? This follows immediately from (2.33) and 
the fact that '/’^-functions possess this property. The property 
(3.4) is of course the basis for the application of the present 
formalism to bound state problems.

v) The configuration space representation. The state 
vector amplitudes corresponding to a state | V7) provide us with 
a generalization of the Fock representation for free fields. As 
we have seen above, several of the simple properties of the Fock 
representation are maintained in the general case. One might, 
therefore, consider the set of state vector amplitudes as a re
presentation of the state \xPy. We shall take such a point of 
view in the following, and speak of this representation as the 
configuration space representation. Alternatively, we can also 
consider the functional W ( |1 ) which generates the state vector 
amplitudes as representing the state in question. In this way we 
speak of the functional representation. For the sake of con
venience, we denote these two representations by the CSR and 
the FR, respectively.

To make full use of the CSR one should know, at least in 
principle, how to construct the scalar product of two states re
presented by their state vector amplitudes. This problem could 
not be solved and we have not even been able to prove that 
the CSR is a complete representation. Until further progress is

1 Cf. Freese [4], As mentioned by Freese, the most general definition of 
is

X[i = a>x¡¿ + ■ ■ ■ + + ■ ■ ■ + y'z'y, + • • • >

where the a, ß, and y’s are subject to the condition

a + • • • + ß' + • • • + y' + ■■■ = 1. 
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made, application of the present formalism must therefore be 
based on an assumption of the completeness of I he representation.

A comparison of the CSR with other better known repre
sentations might offer a possibility of discussing the completeness 
problem. The fact that <()| is the vacuum state of the source-free 
system has been used in the discussion of the oscillating behaviour 
of the amplitudes representing stationary states. It is easily seen 
that all other considerations remain valid for any choice of <0| 
if only this state coincides with the free-field vacuum in the limit 
of no coupling. An example of another possible choice of this 
state is provided by the vacuum state <0, <r| for the free fields 
u (x, a), ip (x, <r) which coincide with the source independent 
fields on a space-like surface a. Moreover, it can be seen that 
one can choose different states in the definition of the functional 
ÿ'dl). Thus, instead of (2.15), we could have defined

<0, cr"| T\ '#>
<o,o/|T|o,y>’

where |0, cr"> and |0, cr'> may be different.
The choice 

nem <0±o|T| ’#>
< 0, er I T\ O,cr> (3-5)

leads to a representation in which the state vector amplitudes 
for all space-time points on o coincide with the Tamm-Dancoff 
representation.

As is well known, one can consider the state ¡0) as the limit 
of 10, cr> in the sense of a certain limiting process, usually re
ferred to as the adiabatic switching-on of the coupling at t — —oo. 
In the sense of the same limiting process, one can regard the CSR 
representation as the limit of the representation based on (3.5) 
for a— oc. The coincidence of the representation (3.5) with 
the Tamm-Dancoff representation on a tells us that (3.5) is a 
complete representation. There might, therefore, be a possibility 
of discussing the completeness of the CSR by a comparison with 
the Tamm-Dancoff representation. The complexity of the limiting 
process involved, however, does not make this a very promising 
prospect.
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Another representation could be based on the functional

'CAID = _<0_|T|J>_
\ 0, o I TI 0, er

The corresponding state vectors can be seen to coincide on a 
with the representation given by Dyson [12].

4. The equations of motion.

In the preceding section, we have introduced two new repre
sentations, the functional representation and the configuration space 
representation. The simplest way to obtain the equations of motion 
in these two representations is first to derive the equations of 
motion in the FR. As we shall see, the equations of motion in 
the CSR can be obtained from those in the FR by a simple procedure.

i) ITie equations of motion in the FR. To determine the 
dependence of the functional V7 on the sources we must try to 
set up variational equations making use of the field equations. 
The ^-functions depending on one space-time point only are 
given by the expressions

^(æll) = ^o(IIFL^(-r|l)- P (1 IF ln(æii) nd if1 FFII).

^(|y|) = n(IIFl^(lyl)- ndlF ln(iyi) no if1 nFii),

^dl¿) = To (HF1 7V(||;) - nd IF Ln dio nd if1 FFH)-

These equations are special cases of the formula (2.33), but can 
also easily be verified directly from the definition (2.15). As 
shown in the Appendix II, the T^-functions depending on one 
space-time point satisfy

(- LX + »X Tv (x 11) - A Tv (I xIx) + I (x) 7'^ ( 11) = 0, 

(«„ + .1/ ) 7V ( I y I ) + ’■ TV (y ! y I ) + f(.y) ( 11 ) = o.
(8, + M) 7',/z (110 + A T.p(z| 10 + 9 (O (I I) = 0.

(4.2)

These equations arc of course also satisfied in the special case 
of I Y7) being the vacuum state, i. e. for '/„-functions. Combining 
(4.1) and (4.2) we get
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(-□x + ™2) ^(æ||)-2 Todir^^dælæ) 

+ >. To (| |)—1 7’0 (| .x | .r) W(| |) = O,

(K + M) P (\y\) + ¿ T0(\\)~ll\p(y\y[) 

-*  7’o(HFl^o(y|yl) Mil) =o,

Ä + M) (i iz) + ;.t0 (nr1 (z 11z) 

-Â T0(||)-1T0(z||z) MII) = O,

(4-3)

where the sources do no longer explicitly appear. To express 
(4.3) as linear equations in P and the variational derivatives 
of V7, we eliminate the T^-functions by use of expressions of 
the type (2.28), (2.29). The resulting equations contain as factors 
certain combinations of T-functions for which we introduce the 
notation

Mæll) = F (I IF1 Mæl I),

MM) = F (I IF1 r0 (I y I), 

V (HF = Ml I)“1 Ml IF-

(4-4)

By the aid of these ^-functions we can write the resulting linear 
differential variational equations for P in the form

(—Dx + m2) Mæl I) (læI) Ml læ)

+ Â M11 æ) ^ ( I æ I ) — 2 V7 ( | x | æ) = 0, 
M + M) V7 (I y I) + Ârj (y 11) Mil,I) 

+ M (lí/l) Myll) + ¿MMI) = 0, 

(<M 37) MIIF +MF I) Ml IF

+ F (||z) ’T(zll) + ÂV7(z||z) = 0.

(4-5)

Thus, for any state | V7), the corresponding functional V7 satisfies 
(4.5). The problem which restrictions (if any) must be imposed 
on the solutions of (4.5) to guarantee that the functional obtained 
represents a state of the system has not been solved in general. 
Hereto we shall return later.
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ii) The rj-functions. By a similar method we obtain equations 
of motion for the ^-functions. Combining (4.2) and (4.4) we get

(—□*  + ™2) (x I I) - 2 To (| |)-1 To (| x | æ) + I (æ) = 0,

(3„+M)î?(iÿi)+A7’„(nri7’(,(ÿiÿi)+r(ÿ) = o, 

ft + J/)};(||z) + A7-0(||)-17-(,(Z||z) + 9(O = 0-

(4.6)

It is convenient to introduce a functional r¡ by 

»7(I¡) = log<oI r|0>. (4.7)

in the fol-

(4-8)

The 77-functions (4.4) are contained as special cases 
lowing general definition of Ty-functions :

■ 0 . . . • 0 
Zd7(æ') lôg(y)

Thus, for instance, ^-functions depending on two space-time 
points are given by

V(\y\z~) = To(| I)-1 T0(|y|z) —??(|y|)?7(| |r), 

rç(æ|y|) = To (I \)~l T0(x\y\) — v(x\\)g(\y\), 

ri(x\\z)= To(| I)-1 T0(x-| |z) —7y(æ| |)^(l 1^)-

(4-9)

With the aid of these formulas we can eliminate the T0-functions 
in (4.6) and obtain

(—Dx + /n2)r/(x| I) — 2?y(|æ|)^(| |æ) — 2^ (læ læ) + / (.r) = 0, 

ft + 3f) y (I y I) + (yll) + A?/ (y|ÿ|) + /(y) = 0, 

ft + Af) r¡ (I\z) + Xr¡ (z\|) r¡ (| |z) + (z\|z) + g (z) = 0.

(4.10

These equations are variational differential equations satisfied 
by the ^-functional in the FR.

Contrary to the ^-functional which depends on the particular 
state considered, the ^-functional is uniquely determined in the 
theory. We must, therefore, supplement the ^-equations by
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boundary conditions characterizing the particular solution of 
(4.10) which enters in the equations of motion for the V7-functional.

For the discussion of this problem we need an interpretation 
of the operator T. Let T (t) be the transformation which con
nects the source-free fields and the source-dependent fields
according to

u (x)=T(trlu0 (æ) T(0,

(x) = T (x) T (i) .
(4.11)

As may be seen from (1.14), T (f) satisfies the variational equation

ÔT(t) = — iT (0 ( ô W (x) dx ,
9-  QO (4.12)

and the boundary condition T (/) — 1 in the limit of vanishing 
sources. Hence, we see that the operator T, as defined by (2.1), 
can be interpreted as the transformation which connects the 
source-independent fields with the complete source-dependent 
fields in the infinite future, i. e.

lim (T-1 u0 (x) T — u (x)) = 0, 
t -> 00

and similar relations for the two other fields. We shall use these 
relations in the form

lim (u0 (x) T — Tu (x)) = 0, 
/ —>oc
firn (y>0 (x) T~T y (x)) = 0, (4.13)

lim (t?0 (x) T — Tÿ (x)) = 0 .

Assume now, as we already tacitly have done in the previous 
considerations, that the source-independent system by a suitable 
renormalization has been cast into a form such that a state of 
lowest energy, the vacuum state, exists and that the energy and 
momentum of this state is zero. It follows that any stationary 
state of the system corresponds to an energy momentum vector 
lying inside the half cone in momentum space characterized by 
p^p[t< 0 and p0> 0. Evidently, time-like momenta corresponding 
to negative energy are excluded by the assumption made. How-
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ever, also space-like momenta are excluded since, by a suitable 
Lorentz transformation, any space-like momentum vector might 
be brought into a form with p0<0, i.e. with negative energy. 
Corresponding to the invariant decomposition of momentum 
space into the three subspaces: the positive frequency part (or 
the (~f)-part) characterized by p^ plt O,po > 0, the negative fre
quency part (or the (—)-part) characterized by p^ p^ < 0,po < 0, 
and the (O)-part with p^p¡i> 0, we can split any field variable 
into three parts, the (+)- the (—)- and the (O)-part. For instance, 
if we define u (p) by

we have

u (.r) = (2 %) 2 ( u (p) e'px dp, 

n(+)(.r) = (2 tt)-2 ( u(p)eipxdp,
‘7? < 0, po > 0

i/—) (.r) = (2 %)—2 ( u (p) eipx dp,
•'p2 < 0, po < o

iz(0)(a) = (2 7t)-2L(p)efpxdp.
•Ip2 > o

(4.14)

(4.15)

From our assumption it follows that

n0 (æ) I 0 > = u(() } (æ) I 0 > • (4.16)

Hence also, as lim (u (æ) — u0 (.r)) = 0, 
/ ->— X

i. e. zz (.t) |0> contains only negative frequencies in the infinite 
past. The corresponding statement about the asymptotic behaviour 
of the field variables when multiplied by <0| T from the left 
follows from (4.13). By the same kinds of arguments as those 
leading to (4.17) we get

lim <0 I T (zz (.r) — zz^+) (a)) = 0 .
/ + oo

(4.18)

Thus, <0|Tzz(æ) contains only positive frequencies in the in- 
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finite future. The same result applies to the two other kinds of 
field variables.

Consider any T0-function

To (x' • •

say. In the limit where one of the space-time points, for instance 
x^v\ tends to — oc, we have, considering all other space-time 
points as fixed,

lim [To (x' • • • x(v) • • • x(/c)|y' • • • ¡z' - -

— <0 I T T(u (x') • • • u (x(v_1)) u (x(v +1}) ■ * ■ iz (x(fc)) • • •) (4.19)

X ii (x^) 10>] = 0.

Hence, we infer from (4.17) that in the limit x^-> — oc the 
T0-function contains only negative frequencies in a Fourier 
decomposition with respect to The same property holds for 
any other space-time point occurring in a T0-function. In the 
opposite limit, we get by a similar argument that To contains only 
positive frequencies corresponding to any space-time point 
approaching the infinite future. Using a terminology which is 
suggestive in connection with the discussion, given by Stueckel- 
berg, Feynman and Fierz [11], of the properties of the causal 
Green’s functions, we say that 7’0-functions obey causal boundary 
conditions. The possibility of expressing the ^-functions in terms 
of T0-functions (as, for instance, expressed by (4.8) and (4.7)) 
implies that also ^-functions satisfy causal boundary conditions.

The equations for the ^-functions (4.10) are of the second 
order in the variational derivatives. We must therefore supple
ment the boundary conditions with the value of the functional 
y and its first variational derivative in the limit of vanishing 
sources. In this limit, however, T= 1. Hence, r¡ (x |1) = 
(0 I u0(x) |0> = 0, in virtue of (4.16). Similarly, in the same limit, 
r¡ (I y I) = V (I lz) = 9. Finally, by the definition (4.7) we have 
chosen rç(||)|7 = 9, = ^o = O.

Similar considerations apply to the state vector amplitudes 
in the infinite future. This is obvious from (2.33) or alternatively 
from the definition (2.15). Hence, IT-functions obey causal 
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boundary conditions in the infinite future. In the infinite past, 
however, the behaviour of the V*-functions  depend on the par
ticular state considered. One more information about the ^-func
tions follows from the considerations in Section 3, iv). If we 
consider the ’/■'-functions for all time variables equal, then, in 
the source-free limit, only positive frequencies are allowed with 
respect to this common time.

It is not known whether more conditions must be imposed 
on the state vector amplitudes to guarantee that a solution of 
the equations of motion (4.5) actually represents a state of the 
system. The solution of this problem is of course connected 
with the likewise unsolved problem of the completeness of the CSR.

iii) The equations of motion in the CSR. Having thus 
obtained the equations of motion in the FR it becomes a simple 
matter to derive the equations of motion in the CSR. As mentioned 
in the Appendix III, in connection with the derivation of the 
equations of motion of the time ordered products, the differential 
operators occurring in the field equations commute with all 
variational operators. We can, therefore, obtain an infinite set 
of linear differential equations for the ^-functions by variational 
derivation of the equations (4.5). For instance, by applying the 
variational operator i ô/ôl (x') to the first equation (4.5), we get

(— Dx + ^2) (ææ' I I) — (I æ I) (x ] I x) 
+ Ár¡ (I I x) V7 (x' I x I) — Xr¡ (x' | x |) W (| | x) 

+ ÅT) (x' | | x) (I x I) — A (x' I x I x) = 0 .

(4.20)

Similarly, from the second equation (4.5), we infer

A + 4f) (æ' I y I) + ¿V (y II) (æ' I y I) 

+ (I y I) ^(æ'yl l) + Ay(yx'| |) ^(lyl) 
+ Ay (x' I y |) ^(y |1) + A V(x'y | y |) = 0.

(4.21)

Proceeding, and taking variational derivatives, one can construct 
equations involving ’/'-functions with an arbitrary number of 
meson space-time coordinates. Equations involving one more 
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nucleon space time point and one more anti-nucleon space time 
point are obtained by applying the operators iô/ôg (y') and 

iô/ôf(z'), respectively. Only, when varying the spinor sources, 
one should remember the anti-commutativity (3.2) of the nucleon 
variational operators. Thus,

= y(y\y'\) — y(y\ I)

1^y(y')(y^f/^ ^CylD) = -^(li/y'l) ï'G/ID —rç(lyl) ’¿'(yiy'l),

1* ¿g~(y') =

Observing this, we get by applying iôfôg (y') to the second 
equation (4.5)

(^ + 4/) T7 (|yy' |) + Åg (y ¡ |) ’¿'(I y y' |) + A V7 (y | y y' |)

- ¿ y (y I y' I) (I y I) + 4y (I y y’ I ) ï'Cy 11) (4.22)

+ ¿y (lyl) ^(yiy'l) = o.

By a similar procedure one obtains equations connecting the 
various //-functions. For later reference we note a few exam
ples :

(— Qr + m2) y (ææ'l I) — Ay (.r'| X I ) g (I I x) — Ay (| .r |) y (x'| I r)

— Ay (x' I x I .r) + i ô (x — x') = 0 ,
(4-23)

(^ + 4/) y (|y|z) + A?/ (y I I) y (\y\z) — Ay (y| |z) y (|y|)

+ 4 y (y I y | z) + i ô (y — z) = 0,
(4.24)

(dz + A/) y (|y |z) + A y (z 11) y (|y |z) + Ay (z | y |) y (| |z)

+ Ay (z I y Iz) + z ô (y — z) = 0,
(4-25)

and, finally, an equation involving three space time points 
Dan.Mat.Fys.Medd. 28, no. 12. 3
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(A + 71/) r¡ (.r|y |z) + Åt/ (?/1 I) >/ (æ|</|z) + År/ (xy\y\z) 

+ Ar¡ (xy\ I) rt (|y|z) År/ (xy\\z) r¡ (|y|)

Ar; (y\\z) ?/ (x \y |) = 0.

(4.26)

The last equation can, for instance, be obtained by operating 
with iô/ôl(x) on the equation (4.24).

In the CSR it would seem most natural to represent the state 
under consideration by the state vector amplitudes taken in the 
limit of vanishing sources. There is, however, as emphasized 
by Schwinger [2j, some advantage of postponing the limiting 
process I (x) -> 0 to a later stage in the considerations. If we, 
instead of considering meson theory, had taken electrodynamics 
as an example of illustrating the general scheme developed here, 
we would have had an obvious reason for doing this, as in 
electrodynamics the external source of the electromagnetic field 
has a direct interpretation in terms of a classical distribution of 
current and charge interacting with the system. Such a justification 
can hardly be found in our case. Still, we shall find it mathe
matically convenient in the following considerations to keep the 
meson field source in the theory.

We, thus, consider the limit of vanishing spinor sources. In 
this case, simplifications arise due to the fact that the difference 
A N between the total number of nucleons and the total number 
of anti-nucleons is then a constant of the motion. This implies 
a selection ride for 7’0-functions. Only those 7’0-functions are 
different from zero which contain the same number of nucleon 
and anti-nucleon space time points. If no T operator appeared 
in the definition

7o(.r' • • • |y' • • • • • •) = <0| T-T(u(.r') ■ • ■ y>(y') • • • y(z') • • •) |0>,

this selection rule would follow in the usual way from A 2V|0)> = 0. 
However, it is easily seen from (2.5), remembering that in the 
limit considered we have W = I u, that A N commutes with T 
and, thus, the selection rule is not influenced by the presence 
of the T’-operator.

With this result, we can write (4.5) in the simpler form
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(— Dx + /?'2) (.r I I) — 2 W (I XI æ) =J),

5. The equations for the one-and two-nucleon problems.

As mentioned in the Introduction, the present formalism 
combines the theory of Schwinger with that of Heisenberg and
Freese. To illustrate this we shall briefly discuss the formal 
properties of the one- and two-nucleon equations from tlie point 
of view of the GSR. For the sake of completeness, and in order

+ J/) ¥/ (I ÿ I) + X n (y 11) ^ (| y |) + 2 V5 * 7 (y |y |) = O, 

A + M) W (| |z) + 2y (z 11) ^(||z) + 2¥z(z| |z) = O,

(4.27)

the limit <p = (p = O being understood in diese equations. It mav 
be of some interest in the following to compare these equations 
with the equations obtained from (4.23), (4.24), and (4.25), 
taking the same limit, viz.

(— Dx + m2) y (xx \\) — Xy (x' IXIx) + iô (x — x') = 0,

ø y+ A/) y (| y |z) + 2y (y \\) y (\y\z) + Xy (y | y |z) + iô (y — z) = 0, (4-28)

+ A/) y (|y|z) + 2 y (z| |) y (|y |z) + Xy (z|y|z) + id (y — z) = 0.

These two sets of equations are of very much the same structure. 
The main difference is that the equations for the state vector am
plitudes are homogeneous equations, while those for the y-func- 
tions are inhomogeneous ones. We shall discuss the relations 
between these two sets of equations more closely in the next 
section. Here, we only mention that the second equation (4.27) 
and the second equation (4.28) may be written as

(*«  + .V + a, (!/) l) + /^/(H); ïz(lÿ|) = 0,

»)(ly|z)= — z),

respectively. Thus, we see that, in a certain sense, ^(lyl) obey 
the homogeneous equation of motion corresponding to Hie 
equation for y(|y|z).

3*
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to introduce sonic convenient notations, we first summarize the 
derivation of the one-nucleon equation given by Schwinger [2].

i) The one-nucleon equalion.

In the limit of vanishing spinor sources the simplest ^-functions 
satisfy, according to (4.10) and (4.28), the equations of motion

(—  + m2) Tj (x I I) — Xr¡ (I x I x) + 1 (ar) = 0,

(—  + m2) (xx' II) — Ár¡ (ar' | x | a) + iô (x — x') = 0, (5.1)

(A + m + Ár¡ (y \ \)) q (\y \z) + ÅT] (y | y |z) + iô (y — z) = 0 .

To simplify the notation, and also to distinguish the ^-functions 
in this limit from the general ones, we introduce

Í/ (X) = Yj (æ I I),

A'c (a, a') = zrç (xx 11),

S' (x, x') — — ir¡ ( I x I a'),

(5.2)

and, consequently, write the equations (5.1) in the form

(—  + m2) U (x) — i Å S'c (x, x) + I (a) = 0,

(—  + m2) J' (x, x') + i 2 S'. (x, x) = ô (x — x'),

(0 + M + z U (a)} S'. (x>x') + * $'c (x>x') = — ô(x — x').

As discussed in Section 4.ii, the r¡-functions satisfy causal 
boundary conditions. Hence, in the limit / = A = 0, we have

zl' (x, x) = Ac (a — a'), 

S' (ar, ar') = Sc (a- — ar'),
(5.4)

where Ac and Sc are the well-known causal solutions of

(—  + m2) Ac (ar — ar') = <5 (ar — ar'),

(0 + Af) Sc (ar — ar') = — ô (ar — ar').
(5.5)
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The equations (5.3) are, for our case of nucleons interacting with 
scalar neutral mesons, the analogue of the equations for the 
Green’s functions in electrodynamics studied in Schwinger’s 
paper. Following his method we substitute the variational de
rivative operators in (5.3) hv polarization operators 77*  and 2?*  
defined by

z A

i A

Here, and in 
variables of integration. Thus, for instance,

2?c* (x, 1) S' (1, x') = 5 2?c* (x, D S'c x') d£'. (5.7)

JJTæ'Â (æ, æ) = 77*  (x-, 1) A'c (1, x')
. * (5.6)

(æ,*')  = (æ, i) s;, (i,x').

the following, numbers occurring twice denote

By (5.6) the equations (5.3) take the form

(—  + m2) U (x) — z A S'c (x, x) = — I (x),

(— Q + m2) d' (x, x') + 77*  (x, 1 ) zd' (1, x'} — ô (x — x), 

(ft + M + A U(x)) S' (x, x') + £*(x,l)S'(l,x')  = —ô (x — x').

(5-8)

Operating on the last of these equations with z A <5/<5 I (x") we 
get, after integration and taking into account the causal boundary 
conditions, 

z A ÔIçx,fy S' (x', x'") = S' (x'> 1) ø (1,2,3) d' (2, æ") S' (3, x'"). (5.9)

The kernel ø depending on three space time points is given by

0 (x', x", x'")

= — z A2 ô (x' — x") ô (x" — x'") — i A (5.10)

In the derivation of (5.9) use has been made of the fact that
7 does not appear explicitly in the last equation (5.8), whence
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ÔZc(x',x'")
ÔU(2) (5.11)

On comparison of (5.6) and (5.9) we infer integro variational 
equations characterizing the polarization operators, viz.

to the last equation (5.1), viz.

77c æ') = *$é  (æ> 1) 0 (1 > æ', 3) S'c (3, ,r),

Z*  (æ, .r) = Sé (x, 1) 0 (1,2, æ') dé (2, x).
(5.12)

For later reference we mention that, from the equation c on jugate

(1 + .1/ + z/;(r| I)) ?/(l?/l ") +^^("11/1’) + i ö(y — z) = 0, (5.13)

we get by arguments similar to those leading to (5.8) an equation 
of the form

+ Af + A U (x,z)) Sc (x, x') + Sc (x, 1) 27c" (1 , x') = — ô (x — x'). (5.14

The polarization operator in this equation is given by

Z*  (x, x') = 0 (x, 2, 3) Äc (2, x} Sc (3, ,r'). (5.15)

According to Schwinger, the one-nucleon equation is ob
tained as the homogeneous equation of motion corresponding to 
the inhomogeneous equation (5.8) for the Green’s function Sc. 
Thus, denoting the one-nucleon “wave function” by /, the 
equation reads

(«-Jf+H;(x))xfø)+£*(i,  l)z(l) = 0. (5.16)

As shown in the previous section, the equation of motion for 
the state vector amplitude depending on one nucleon coordinate is

+ M + U (y)) <P (I y I) + i Å !P(|y I) = 0. (5.17)

The similarity between this equation and the inhomogeneous 
equation for the Green’s function S'c makes it natural to investi
gate under which conditions solutions of (5.16) also satisfy (5.17). 
For this to be true we must have
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^^Z(æ) = ^(æJ)z(l)- (5.18)

By derivation of (5.16) with respect to I (x') we get, after inte
gration, an expression for the variational derivative of /, viz.

Z = ’ + S'c (x’ 0 0 ’ 2’ 3) C2’ æ') * (3)’ (5-19)
The function x^ is a so far undetermined solution of

($ + 71/ + 2 U (x)) (a/; x) + 27*  (æ, 1) /(0) (.r'; 1) = 0. (5.20)

Comparing (5.18) with (5.19) we see that % is a solution of (5.17), 
provided that x^ vanishes.

We thus have the result that any solution of the coupled 
equations

(^y + 71/4-2/7 (y)) (I y I) + 27c (y, 1) V/(1)(|l|) = 0,
'I’m (x I y I) = 1 Sé (y, 1) ø (1,2,3) < (2, x) (| 31) | <5'21>

also satisfies (5.17). The reverse statement is of course not true. 
We have, therefore, attached a subscript to the state vector 
amplitudes in these equations to indicate that a solution in the 
form (5.21) is possible for a restricted class of states only, the 
one-nucleon states.

From (5.17) we get by variational derivation an infinite 
system of coupled equations for the state vector amplitudes. The 
first of the equations derived from (5.17) reads

(^y + M+2i7(y)) ^(ælyl) —z2d'(æ,y) i^dyl) |
+ 2 y7(æy | y I) = 0. I

Let us now follow, in the present version of the CSR, the sug
gestion by Freese and try to eliminate all amplitudes depending 
on one or more meson coordinates from the infinite set of equa
tions. The states for which this elimination process is possible 
might, alternatively, be called the one-nucleon states. To get an 
idea how the resulting equation will look we convert the infinite 
system of equations into a finite one by the approximation 
assumption that W (xy\y\) can be neglected in (5.22). We can 
then solve (5.22) by the aid of the Green’s function satisfying
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($y + M + 2 U (y)) (y, y') = - ó (y - y'), (5.23)

and causal boundary conditions. The approximate solution of 
(5.22) is then

f'(xlyl) = (x; y) - i A S‘v> (y, 1) A'c (1, x) F(| 11), (5.24)

where </0) is a solution of

(0y -j- 3/ + 2 U (y)) /0) (x; y) = 0. (5.25)

To obtain an equation of the form (5.16) we choose Ç9(O) = 0. 
With this choice we get, instead of (5.17),

+ .1/ + L’(y)) ÿ'd y I) - iVS(cv> (y, 1) d'(1, y) ^(1 1 I) = 0. (5-26;

In the next approximation one would keep all amplitudes with 
less than two meson space time points. Proceeding in this way 
one can, in principle, construct an exact equation of the form 
(5.16), provided that the procedure converges. The polarization 
operator '27*,  say, obtained in this way is characterized by the 
requirement that the resulting equation

+M + Å U (y)) W (|y |) + 'S*  (y, 1) V ([ 11) = 0

is consistent with (5.17), i. e. that

= U^!?(|y|).

By arguments similar to those above it can easily by verified 
that '27*  is, in fact, identical with 27c". Thus the resulting one- 
nucleon equation is identical with Schwinger’s equation.

The advantage of the equations (5.21) as compared with the 
infinite system of equations obtained from (5.17) becomes 
obvious when we pass to the physically interesting limit of 
vanishing external sources. For / — 0, the second equation (5.21) 
and the equations obtained therefrom by variational derivation 
become explicit expressions for the state vector amplitudes with 
one and more meson space time coordinates. Therefore, for 
1 = 0, any solution of the one-nucleon equation provides us 
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with a corresponding solution of the equations of motion in the 
configuration space representation.

ii) The two-nucleon equation.

According to 
defined by

Schwinger, the two-nucleon Green’s function is 

ToQyy' I)
Tod I)

(5.27)

Using the formulas in Section 4, it is easily verified that

G (y, y'-, z, z')
= h (\yy'\zz') — (|y|z) Yj (|y'|z') + ^(|y|^') h (ly'l^), j (5.28)

the limit = cp = 0 being understood in this formula. An equation 
of motion for y (\yy'\zz') can be obtained from (4.10) by taking 
appropriate variational derivatives. From the equation obtained 
in this way, and by (5.3), we get

+ df+Â U(y)) G(y, y'; z, z) + i Â G (y,y';z,z')

=  ô (y — z) S' (y', z') + <5 (y — z') S'c (y', z).

Using (5.3) we see that

- + M + ÀU (y) + Â M + Â U (y') + i /. G (y, y' ;z,z')

= ô (y —z) ô (y' — z') — ô (y — z') ô (y' — z).

Following Schwinger, we introduce an interaction operator IV by

F (y) F(y') G(y,y'-,z,z')~ W (y, y'; 1,2) G(l,2;z,z')

= 0 (J/ ~ z) ô (y' — z') — Ô (y — z') <5 (y' — z).
(5.31)

The symbol F is an abbreviation of the integral differential 
operator entering in the equation for the one-nucleon Green’s 
function, i. e.

(5.30)

F (y) £ (y) — (A + M + Å U (y)) £ (y) + 27*  (y, 1)£(1). (5.32)
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As G satisfies causal boundary conditions we can integrate (5.31 ) 
by means of S'c. Combining the resulting equation, viz.

F(y)G(y,y';z,z') + S<í(y,,2) W(y, 2; 3,4) 6(3,4; 2,z')

i (ll - --) s; (!/', z') + S (y - z') S’c (y', z),
(5.33)

with (5.29) we infer a condition on the interaction operator:

* 2 G (y> y';z,z') = S*  (y, 1) 6 (1, y'; z, z') 

+ S' (y', 2) W(y, 2; 3, 4) 6 (3, 4; z, z').
(5.34)

Integrating (5.33) once more, wc find that

G (y, y'; z, z') - S( (y, 1)0“ (y', 2) tV(l, 2; 3, 4) G (3, 4; z, z') 

= S' (y, z) S' (y', z') — S' (y, z') S' (y', z).
(5.35

From this equation one gets an expression for the variational 
derivative of G with respect to I (y) which, together with (5.34), 
gives Schwinger’s characterization of the interaction operator, viz.

W(y,y'; 1, 2) 6 (1, 2 ; z, z')

= (y't h 2) J'(l, y) 6(y, 2;z,z')
+ S' (y, 1) i À F [VV(1, y'; 3, 4) G (3, 4; z, z')].

For IF we shall use another equation which does not depend 
explicitly on the variational derivative of the two-nucleon Green’s 
function. From (5.35) one gets, using (5.9),

= 2À G lJ ’ 1 ’ 6(3,4;z,z')

6 (y, y'; 1,2) ø (1,3,4) A'c (3, x) S' (4,5) F (5) F (2) G (5,2 ; z, z').

(5.37

The combination of this expression with (5.34) gives the alternat
ive characterization of IF, viz.
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(2?*  (y,z) ó (yz — zz) — 2?*(y,z z) ô (yz — z)) + S' (y', 2) VV (y, 2; z,z') 

= ÍAG(y,y';l,2)Í^W(l,2;z,z') 

-|p(z')G(y, y'; l.z') 0(1, 2,z) 4(2, y) 

-^F(z)G(y, y';z, 1) 0(1, 2,z') 4(2,y)-

(5.38)

Here, F denotes the operator entering in the equation of motion 
for the one-nucleon Green’s function in the form given by 
(5.14), i. e.

F(z) C (z) = (4 + M + >. G(z)) f (z) + f (1) T*  (1, z). (5.39)

The equations of motion for the state vector amplitude 
depending on two nucleon space time points obtained from the 
equation (4.22) by passing to the limit of vanishing spinor 
sources read

+ M+ 2 U (y)) W(\yy'{) + 2 ^(y|yy'|) = 0,

(^+ M + 2 U (y')) ^(lyy'l) + 2 W (yz | y yz |) = 0,
(5.40)

whence also 

@y + M + Å U(y) + i+M + 2 t/(yz) + z 2^^^ 1^(1 y yz |) — 0. (5.41)

This equation is a homogeneous equation of motion corresponding 
to (5.30) in the same sense as the equation (5.17) for the one- 
nucleon amplitude is the homogeneous equation corresponding 
to the equation for the one-nucleon Green’s function (5.3).

According to Schwinger, the two-nucleon equation is the 
homogeneous equation corresponding to the equation (5.31), i. e.

F (y) F (y') % (y, y') - W (y, yz ; 1, 2) Z (1, 2) = 0 . (5.42)

It seems to be difficult to establish any general connection be
tween the solutions of this equation and the solutions of (5.41). 
If, however, we take instead of (5.42) the two integrated equations
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F (y) Z y') + S'c (y', 2) W (y, 2; 3, 4) / (3, 4) = O,

F (?/') Z (y, y') + $'c (y, 1) VV(1, y'-, 3, 4) / (3, 4) = O,

where the inhomogeneous terms have been dropped, then one 
can rather easily find the connection between the solutions of 
these equations and the solutions of (5.40). Evidently, the con
dition for compatibility of (5.43) and (5.40) is that

(y, 1 ) Z (1 , if) + S' (y', 2) IV (y, 2 ; 3,4) Z (3,4)

= iiiïï^)X(-V-^'
(y', 2) z (y, 2) + S' (y, 1) VV (1, y' ; 3, 4) X (3, 4)

(5.44)

uW)z(y’y,)-
By integration of (5.43) we get

Z (y- y')~ S¿(y, 1) S' (y, 2) IV (1 , 2; 3,4) / (3,4) = <p (y,y')> (5.45

where (p is any solution of

F (y) <p (y, y') = F (y') <p (y, y') = o, (5.46)

i. e. (p has one-particle properties with respect to both coordinates. 
From this equation we infer by arguments similar to those used 
in the derivation of the one-particle equation that

' A ïï(x) V (jl’ yn> = ?,<0) l<; ,J’ V
+ £ (if. 1) 0 (1, 2, 3) 4' (2, x) ? (y, 3) (5.47)

+ S;(y, 1) 0(1, 2, 3)4'(2, x)?, (3, y'), J
where

F (y) 9?(0) (æ; y, y') = F(y') <pw (æ; y, y') = o. (5.48)

Using this we find from (5.45) an expression for the variational 
derivative of % with respect to I (x), viz.

ôï(æ) X ?/) = 2 G (?/’ y/; 1 ’ é/{r) 1V(1,2;3,4) Z(3,4)

-(ËG) G (y, y'; 1, 4)) 0 (1, 2, 3) A'c (2, x) Z (3, 4) + F(0),
(5.49;
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where Ä(ü) is a contribution which vanishes for <p(0) equal to zero. 
On comparison with (5.44) and using (5.38) we find that % satis
fies (5.40), provided that vanishes.

Hence, corresponding to (5.21), we have the result for the 
two-nucleon system: Any solution of the coupled equations

^(2) (I yy' I) - S' (y, 1) S' (y', 2) W (1, 2 ; 3, 4) W(2} (I 34 |) = ^ (y, y')

2 = ¿¿G(y,y';i,2) ,4/U'V(1’2;3’4) ^(2) (134 I)

- (F (4) G (y, y'; 1,4)) ø (1, 2, 3) A' (2,x) ^(2)(|34|),

(5.50)

where (p (y, y') satisfies (5.46), is a solution of (5.40). In partic
ular, passing to the limit 1 = 0, the second equation (5.50) and 
its variational derivatives become explicit expressions for the 
state vector amplitudes depending on one and more meson 
coordinates besides the two nucleon space time coordinates. It 
is thus possible in a unique way to relate to any solution of the 
Bethe-Salpeter equation a solution of the equations of motion 
in the configuration space representation.

Sum in ary.
A reformulation of quantum field theory is given, in which 

any state of the system considered is represented by a functional 
depending on external sources. The variational derivatives of 
this functional provide us with a generalization of the Fock re
presentation in configuration space to the case of non-linear 
fields. The representing amplitudes can be expressed entirely in 
terms of matrix elements of time ordered products of field 
operators and possess several simple properties which are 
independent of the magnitude of the coupling constant. It is 
shown that these amplitudes satisfy homogeneous equations of 
motion which can be derived in a simple manner. The equations 
of the Bethe-Salpeter type following herefrom become identical 
with those following from Schwinger’s theory of Green’s functions. 
Our representation has many properties in common with that 
given by Freese.
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Appendix I.
The sources of the spinor fields.

In Section 1 we have assumed that the domain of the external 
sources can be chosen so large that variational derivatives with 
respect to allowed variations of f and g can be defined in a unique 
way. This property together with the anti-commutativity (1.6) is 
all we need for the development of the configuration space 
representation. It is, maybe, not quite trivial that the require
ments to the sources are consistent. We shall, therefore, con
struct an example of a possible domain of allowed /’-number 
pairs.

Let an and bn, n = 1, 2,••• be two sets of infinite matrices 
which satisfy the commutation rules

\ J

\ @n> G ¡a y y dn, / 0 >
(Ap. I. 1) 

' A AO - A y bi> j a run
I A A \ __ / /J 1,f \ — 0\ °n> \ dn, L)m j V ,

while all the a's anti-commute with all the b's. As is well known, 
there exists a matrix which anti-commutes with all the as and 
with all the b's and with their adjoints. This matrix Q, say, is 
the parity of the matrix 27 (a£ an + b„ ba). We choose Q hermitian 
and unitary, i. e.

= P, ß2 = 1. (Ap. I. 2)

For the construction of the /’-number pairs we further need 
two complete orthonormal sets of functions in four-dimensional 
space, fn(x) and gn (x), such that any function, £ (æ) say, can 
be expanded in either of the forms

f (X) = S fii’ /■„ (x)

or
£ CO = 27 9n CO •

Let cq and c2 be complex numbers. Then,
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f (æ) = «h 2? an fn (æ)

9 (a') c2 27 bn gn (x) j
(Ap. I. 3)

is a possible allowed /-number pair. In fact, due to (Ap. I. 1) 

{/*(*),  /*(*')}  = g (x')J = {g (x), g (x')} = 0. (Ap. I. 4) 

A domain of /-number pairs can be obtained from the particular 
pair (Ap. 1. 3) by unitary transformations in the a, ¿»-space. In 
particular we are interested in infinitesimal unitary transform
ations such that the corresponding variations of the /-number 
pair form a pair of allowed variations in the sense of Section 1, 
i. e. such that

{¿/■(æ), f (x')} = {ôf(x), g (x')} = 0, 

{ôg (x), f(x')} = {ôg (x), g (x)} = 0.

Such variations can be obtained by means of the matrix

¿ = ^(«í -Q «n — «n & an + b\ Q ßn — ß*  Q bri), (Ap. I. 6)

(Ap. I. 5)

where the an’s and the ßn’s are infinitesimal complex numbers. 
By the properties of Q, A is anti-hermitian, whence 1 + A is 
unitary. By this transformation the an’s and the 6n’s vary ac
cording to

ôon = — [A, aj = ß«n, 

= — [A, bn] = Qßn.
(Ap. I. 7)

The corresponding variation of the /'-number pairs is

¿/■(x) = Ï2 27 an fn (x), 

ôg (x) = c2 P 27 ßn gn (x).
(Ap. I. 8)

Obviously we have here an example of a pair of allowed variations 
for any set of infinitesimal an’s and ßn's. Thus, all variations 
of the form

ôf(x) = aô£ (x),

A g (x) = £? ôg (x), 
(Ap. I. 9)
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where ô£ and ór¡ are infinitesimal functions are included among 
the allowed variations. Therefore, if an expression of the form 
(1.10) holds for an arbitrary pair of allowed variations, we have 
in particular

P \ (x) K (x) + ôt] (x) L (x)) ôx — 0, (Ap. I. 10)

with arbitrary ô £ and ô r¡. As Q is non-singular we conclude 
that K (x) as well as L (x) vanish identically.

Appendix II.
Reformulation of a theorem due to Wick.

Let u (x) be the field operator of a free scalar neutral meson 
field. We shall use Dyson’s notation

N (u (x') u (x") • • • u (x(n))) (Ap. II. 1)

to designate the product of the u’s ordered such that all absorption 
operators stand to the right of all emission operators. This pro
duct we call the normal product of the us indicated. As shown 
by Wick [9], any time ordered product can be decomposed into 
a sum of normal constituents according to

n
T (u (x') u (x") • • • u (x(n))) = N^. (Ap. II. 2)

v=o

For v odd Ar(r) vanishes. For v even, is a sum of terms, one 
term for each possible pairing of v factors u. Let for v even, 

be some of the space time points x', x", • • -, x(,l). 
For a definite pairing (£', £"), • • • (£<>_1), £(r)) the con
tribution to Ar(r) is

<0 I T(u (£') u (£")) I 0> <0 I T(u ({''') a (£"")) | 0> • •• 

X<0| T (u (^-b) u (£(r))) |0>

X AT (u (x') u (x") • ■ • u (x(,l)); , • • • ¿?v)).

(Ap.II.3)

Here, ?/(•••) denotes the normal product of the unpaired u’s. 
For instance,

N (u (x') u (x") u (x'") U (x"") ; x" x"") = N (u (x') U (x'")) .
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To obtain from terms of the form (Ap. II. 3) one must add 
all contributions from possible pairings of the space time points 
£', S", ‘ and, further, sum over all subsets of v field operators
il. Hence, we can write in the form

N (u (x1) u (x") • • • u (x<n>); , • • •

where the C’s are certain c-number functions not
n. The summation runs over all subsets , • • • 
ular, we note that, for n even,

N(7,) = C (x', x", ■ • • x(n)).

Combining (Ap. II. 4) and (Ap. II, 2) we have

T (u (a/) • • • u (x(n))) =
n J(Ap. II. 6)

v = 0£'-^v>

We include formally odd v’s in the summation and choose 
vanishing corresponding C’s.

The vacuum expectation value of any JV-product is zero. 
Thus, from (Ap. II. 6) for n even, we get explicit expressions 
for the C’s, viz.

C (of, x", • • • x(r^) — To (.'if, x", • • • x^). (Ap. II. 7)

As in (2.20), Tq (x', • ■ •) stands for the vacuum expectation value 
of the T-product. Wick’s theorem now takes the form

T (zz (af) • • -u (ic(n))) = 1
n /(Ap.II.8)
Z W- ■ • • i<->)W(U(x') • • • u(x<">); r. • • • f<”). I

It should be noted that (Ap. II. 7) also holds for v odd as the 
vacuum expectation value of the product of an odd number of 
free field operators vanishes.

In case also other types of fields are considered, the definition 
of the iV-product is slightly modified. Each term in the zV-product

Dan.Mat.Fys.Medd. 28, no. 12. 4 

> (Ap. II. 4) 

depending on
In partic-

(Ap. 11. 5)
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should now be multiplied by a factor (±) which has the value 
+ 1 if the permutation of spinor operators involved in the ordering 
process is even, and — 1 if this permutation is odd.

Consider the case of a free meson field u and a free spinor 
field described by the field operators y> and Similar to (Ap.
II. 8) one can write Wick’s theorem for this case in the form

T (u (x') • ■ ■ u (xw) (p') • • • (yU)) V (z') ■ ■ ■ yj =

X N (u (x') • • • u (x(/<)) ;£'••• £(x) I (?/') ’ ’ ' V’ (i/°) V ’ ' ‘ rl(A)
(Ap. II. 9)

where (±) is the parity of the permutation

We introduce the notation

W (x' • • • |p' • • • \z • ■ •) = <0 I A(u (x') • • • ip (y') - ■ ■ ip (z') •••)!’£'>• (Ap. II. K

If, further, we use the notation of Section 2 (p. 17), we get 
from (Ap. II. 9)

(A]). II. 11

The factorials take into account that we now perform the sum
mation such that the £’s, rfs, and C’s run independently over the 
x’s, p’s, and z’s, respectively.

As is well known, the functions V7 are the representing ampli
tudes for the state | Ï7) in the Fock representation in the con
figuration space. We can thus regard (Ap. II. 11) as a re- 
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cursion formula expressing the Fock amplitudes in terms of 
matrix elements of time ordered products.

Appendix ill.
The equations of motion for the Tt^-functions.

The equations of motion for the 7^-functions depending on 
one space time point only are easily obtained from the field 
equations (1.2). One finds1

( Qz H- m 2) Tip (.r 11 ) — A 7 ip ( IXI .t) T 7 (rr) 7 ( I j ) — 0, 

Ä + O ^<#(1.7 I) + ¿ Tlp(y\y[) + f(y) Tip(\|) = 0, 

(I + M) Tip (i IA + A Tip (z | |z) + g (A Ty (I I) = 0.

(Ap. III. 1 )

From the variational equations (1.14) and the canonical com
mutators it follows that

Ä + Ai) ô y (y) = ô [(dy + Af) y (y)],

and similar relations for the other field variables. Hence, the 
differential operators appearing in the field equations commute 
with all variational derivative operators. We can thus obtain 
equations of motion for T^-functions depending on more than one 
space time point simply by taking variational derivatives of the 
equations (Ap. III. 1). For instance, applying —i Ô/Ô f (z) to the 
second of these equations, we get

(0V + Jf) T^dyfz) + A ^(yfyfz) I
(Ap. III. 2)

+ /■([/) Tip(\\z~) + zd(y —z) 7^(11) = 0. J

One should note that, for instance,

. ô
1 ôf(z) Tp ( I y j ) — 7 ip ( I y I z).

1 The T-product of ip (x) and y (x') for x — x' is chosen as 
T (y> (x) ÿ (x)) = | [y (x), ÿ (x)].

Hence the minus sign in the first equation (Ap. III. 1).
4»
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The following equations hold

( U.T' + ft 'ftft ft!"'•••)

ft 1 / X 'ft (x" ■ ■ ■ |.r'y' • • • y{l) |.r'z' • • •)

+ / ft Tp (x" • • • I y' • • • y(l) \z' ■ ■

b i y ô (x' — £) Tip (.r" • • • ; £ I y' • • • y(l) \ z' • • •) = 0.

(Ap. 111.3)

(ft + ft ft ft • • • ft • • • !-'•••)

+ A ft (x' •••</' I y' • • • I z • • • )

+ /’(?/') ft ft • • • jy" • • • |z' • ■ •)

T ft) Tp{x ■ ■ • \y"- •• |z' ■••;£) = °-

(Aj). III. 4)

(ft + ft 7\p (x' • • • I y' • • • y(Z) | z • ■ • )

+ Å Tip (x' • ■ • z I y' • • • y(Z) | z' • • ■) 

+ y (z') (— 1 )l 7\p (xr ■■■ \ y' ■■■ y(l) I s" • • •)

• ft (±)ft/~s') Tp(x'- ■ ■ \y'- • • y(l);y\z"- ••) = ().

(Ap. III. 5)

The (±) factors have the same meaning as, f. inst., in (2.25).

One can verify these formulas by induction on the number 
of space lime points. To illustrate: if we apply i ô/ô y (y) on 
(Ap. III.5), we get

ft. + A/) Tp (x' • ■ • I yy' • • • y(Z) |z' • • •)

+ X Tip (x' • • • z'\yy' • • • y(Z) | z • • •)

- .7 ft) ft i)z ft ft ■ ■ ■ ) u u' ■ ■ ■ y(Z) !*'•••)  

+ ? <5 (y — s') ft i )z ft ft' ft ft' • • •)
(Ap. III. 6

I- ft1 (±) Ô (r/ — z') Tip(x' • • • \yy' ■ ■ ■ y(l) ; y | z" • • •) = 0. 
y^u

As the number of nucleon space time points has now increased 
by one, the third term has the required sign factor. The factor 
( - 1) appearing in the fourth term is in accordance with the
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convention as regards the value of the parity factor (±). Hence, 
the two last terms in (Ap. 111. 6) combine to give a term of the 
form of the last term in (Ap. III. 5) and we see that (Ap. III. 6) 
is again of the form (Ap. III. 5).

The above equations have been derived by Freese [4] for 
the source-free case bv means of other methods.
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Introduction.

r 1 is paper describes the theory of interference filters of various 
1 types (especially interference filters with three and four silver 

layers, § 4 and § 5).
It will be shown how all the optical properties (such as 

reflectivity, transmission, phase changes at reflection, transmis
sion, etc.) of an interference filter can be exactly calculated when 
the indices of refraction v—ix, n and the thicknesses t, d of the 
different thin layers are known as a function of the wavelength Â 
(r—ix is the index of refraction and t the thickness of a metal 
layer). Furthermore relations are deduced between the optical 
constants of the reflective layers w hich give optimum conditions 
for the different types of filters.

In a following paper, it will be discussed how it is possible 
to measure the thicknesses of the dielectric layers on the filter 
base itself with an accuracy of about 20 Å and how such a filter 
can be made by means of the high-vacuum evaporation process 
for a filter area of 22 X 22 cm.

§ 1. Fresnel’s Equations.

Reflection of light from and transmission through a boundary 
(fig. 1) between two materials 0 and 1 with indices of refraction 
n0 and are determined by Fresnel’s equations derived from 
the Maxwell equations of electrodynamics [1] & [2].

The following notations will be used:
9? angle of incidence, / angle of refraction, and n index of 

refraction, s used as index means the component of the electric 
vector perpendicular to the plane of incidence and p used as 
index the component parallel to the plane of incidence.

1*
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/ is determined by Snell’s law:

n0- sin (p = i\x sin /. (1,1)

If (h’s., Ef)) are the components of the electric vector
incident plane light wave, the components of the electric

of the 
vector

l'ig. 1.
<p: Angle of incidence.
/: Angle of refraction. .
E : s or p component of electric vector of incident light Wave.

of the reflected light wave (E¡¡, E^) and of the transmitted wave 
(EJT), ßpT)) are determined by

ziQ cos <p — z?L cos/ 
Z?o COS (p + 77 t COS /

JlL COS (p--- 710 COS /

711 COS (p 4“ 710 COS /
(1-3)

G — 1 + ps- (1,4)

4T| = £p- Ip- >P = (1 + (>■ 5)
111

The direction of the light is 0 —> 1 .
If the direction of the light is the opposite 1 -> 0, zi0 must be 

interchanged with zij and cp with /.
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The following relations are satisfied :

roi — — 7’10 (1,6)

^01 * ^10 ----- 7’ol ' 7’10 = 1 (1,7)

(valid either for the s or the p component).
At a normal angle of incidence (qp = % = 0) only one com

ponent of the electric vector is present, and the Fresnel equations 
in this special case are the following:

^o — ^i
77o + 7h’

(1,8)

¿01 — 1 + 7'oi • (1,9)

Direction of the light: 0 —> 1 .
(The reason why rs. = — r when qp = 0 is that Es = — E 

for the incident wave by definition [1]).
All these equations are also valid when the material 1 is 

absorbent (especially a metal). In this case the index of refraction 
nx is represented by a complex number /q = v—ix and / 
is a complex angle determined by (1, 1).

In accordance with [3] we define a — ib = rq cos /; from 
(1,1) we get a — ib = |/(r — i x)2 — sin2 <p = i g + i • 2 vn 
(with g — x2 + nosin2ç? — v2), and from this equation we then
obtain

0 = |/|G + I/í72 + (2vx)2), (1, 10)

and
vu

(1,11)a = b ■

By introducing zq cos/ = a— ib into (1,2) and (1,3) the
Fresnel equations can be written as follows:

1 —---- ----- (a — ib)
i/i nn cos qp

?s = Qs'e°s =-----------------° . -- ------- (1, 12)
1 + - (a—zô)

zz0 cos (p
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Table 1. Angle of incidence ep = 45°.

a b

0.2v
X \ 0.1 0.2 0.0 0.1

1.0 0.08174 0.16402 1.0 1.2247 1.2234 1.2194
1.5 .09048 18114 1.5 1.6583 1.6578 1.6561
2.0 .09429 .18865 2.0 2.1213 2.1211 2.1203
2.5 .09623 .19249 2.5 2.5981 2.5979 2.5975
3.0 .09734 .19468 3.0 3.0822 3.0821 3.0819
3.5 .09803 .19605 3.5 3.5707 3.5707 3.5705
4.0 .09847 .19695 4.0 4,0620 4,0620 4,0619
4.5 .09879 .19759 4.5 4,5552 4,5552 4,5551
5.0 .09902 .19803 5.0 5.0498 5.0497 5.0497
5.5 .09918 .19837 5.5 5.5453 5.5453 5.5453
6.0 .09931 .19863 6.0 6.0415 6.0415 6.0415

c h

V
X 0.1 0.2 X 0.0 0.1 0.2

1.0 0.10893 0.21819 1.0 0.8165 0.8165 0.8166
1.5 .10690 .21378 1.5 1.3568 1.3570 1.3578
2.0 .10476 .20945 2.0 1.8856 1.8858 1.8863
2.5 .10335 .20668 2.5 2.4056 2.4057 2.4061
3.0 .10245 .20490 3.0 2.9200 2.9201 2.9203
3.5 .10185 .20372 3.5 3.4307 3.4307 3.4309
4.0 .10146 .20291 4.0 3.9389 3.9390 3.9391
4.5 .10117 .20232 4.5 4.4455 4.4455 4.4456
5.0 .10096 .20191 5.0 4.9507 4.9508 4.9508
5.5 .10080 .20159 5.5 5.4551 5.4551 5.4551
6.0 .10068 .20134 6.0 5.9588 5.9588 5.9588

-

1-C<^(c-
\

- ih)

('1 + £2V?(C_
\ n„

- ih)
(1, 13)

with

c — ih pP-tf-v2)] 
\ a2+b2 ; • ri —

/2 a2 + x2 —v2\ 
\ a2 + ô2 ) ■b. (i, 1-0

If the light wave with the angle of incidence <p coining from 
air (n0 = 1) is first to pass under the angle of refraction ip through
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Table 2. Angle of incidence tp = 60°.

a b

V
x 0.1 0.2 v

X 0.0 0.1 0.2

1.0 0.07569 0.15192 1.0 1.3229 1.3213 1.3165
1.5 .08664 .17349 1.5 1.7321 1.7313 1.7292
2.0 .09178 .18365 2.0 2.1794 2.1791 2.1780
2.5 .09450 .18904 1 2.5 2.6458 2.6456 2.6449
3.0 .09608 .19218 3.0 3.1225 3.1224 3.1220
3.5 .09708 .19416 3.5 3.6056 3.6055 3.6052
4.0 .09774 .19548 4.0 4.0927 4.0926 4.0925
4.5 .09820 .19640 4.5 4.5826 4.5825 4.5824
5.0 .09853 .19707 5.0 5.0744 5.0744 5.0743
5.5 .09878 .19756 5.5 5.5678 5.5678 5.5677
6.0 .09898 .19795 6.0 6.0622 6.0622 6.0621

c h

X 0.1 0.2 V
X \ 0.0 0.1 0.2

1.0 0.10809 0.21680 1.0 0.7559 0.7555 0.7542
1.5 .10826 .21658 1.5 1.2990 1.2992 1.2998
2.0 .10625 .21249 2.0 1.8352 1.8355 1.8361
2.5 .10461 .20920 2.5 2.3623 2.3624 2.3628
3.0 .10346 .20692 3.0 2.8823 2.8823 2.8827
3.5 .10268 .20534 3.5 3.3975 3.3976 3.3978
4.0 .10211 .20422 4.0 3.9094 3.9095 3.9096
4.5 .10170 .20341 I 4.5 4.4189 4.4190 4.4191
5.0 .10141 .20280 5.0 4.9266 4.9267 4.9268
5.5 .10117 .20235 5.5 5.4331 5.4331 5.4332
6.0 .10099 .20199 6.0 5.9385 5.9385 5.9385

a dielectric layer with the index of refraction n (before reaching 
the boundary) (a, /?) and (c, h) will be unchanged as g is un
changed. (n0-sin<p = n • sin and in (1, 12) and (1, 13) we 
have only to change n0 to n and cosç? to cos ip.

In Tables 1—3 (a, &) and (c, 7i) are given as functions of 
(v, x) with angles of incidence (p = 45°, 60°, and 75°, respectively, 
and with n0 =1,0 (only to be used for silver). From these tables 
it is apparent that for v < 0.2 it will be sufficient in most cases 
to use the approximation:
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Table 3. Angle of incidence ep — 75°.

\ V
X 0.1 0.2 X 0.0 0.1 0.2

1.0 0.07202 0.14457 1.0 1.3903 1.3886 1.3834
1.5 .08412 .16846 1.5 1.7841 1.7833 1.7808
2.0 .09006 .18023 2.0 2.2210 2.2206 2.2193
2.5 .09329 .18663 2.5 2.6801 2.6798 2.6791
3.0 .09519 .19041 3.0 3.1517 3.1515 3.1510
3.5 .09640 .19282 3.5 3.6308 3.6307 3.6304
4.0 .09721 .19442 4.0 4.1150 4.1149 4.1147
4.5 .09777 .19555 4.5 4.6025 4.6024 4.6023
5.0 .09819 .19637 5.0 5.0924 5.0923 5.0923
5.5 .09849 .19699 5.5 5.5842 5.5842 5.5841
6.0 .09873 .19746 6.0 6.0773 6.0772 6.0772

c h

V
n 0.1 0.2 ' v

X ' , 0.0 0.1 0.2

1.0 10677 .21428 1.0 0.7193 0.7185 0.7163
1.5 .10874 .21758 1.5 1.2611 1.2612 1.2616
2.0 .10708 .21415 2.0 1.8010 1.8011 1.8017
2.5 .10538 .21076 2.5 2.3320 2.3321 2.3326
3.0 .10413 .20823 3.0 2.8556 2.8557 2.8560
3.5 .10321 .20641 3.5 3.3739 3.3739 3.3742
4.0 .10256 .20512 4.0 3.8882 3.8883 3.8885
4.5 .10208 .20416 4.5 4.3998 4.3998 4.4000
5.0 .10171 .20344 5.0 4.9092 4.9092 4.9093
5.5 .10144 .20288 5.5 5.4171 5.4171 5.4172
6.0 .10122 .20244 6.0 5.9237 5.9238 5.9238

b = \g- a = h = and í ■ = ¿2——A
]/g \ g/

(g = X2 + sin299) .

(1, 15)

In the case of normal incidence (92 0) we obtain

1
(1, 16)
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Table 4. 180 — Ôo (in degrees).

V
X 0.0 0.1 0.2 0.3

1.0 90.000 89.713 88.850 87.423
1.1 84.547 84.289 83.517 82.235
1.2 79.611 79.380 78.690 77.547
1.3 75.137 74.931 74.317 73.300
1.4 71.075 70.892 70.346 69.444
1.5 67.381 67.218 66.732 65.931
1.6 64.011 63.866 63.435 62.723
1.7 60.931 60.803 60.419 59.785
1.8 58.109 57.995 57.652 57.088
1.9 55.517 55.415 55.109 54.605
2.0 53.130 53.039 52.765 52.314
2.1 50.927 50.845 50.599 50.194
2.2 48.888 48.814 48.594 48.229
2.3 46.997 46.930 46.732 46.403
2.4 45.240 45.180 45.000 44.703
2.5 43.603 43.548 43.386 43.117
2.6 42.075 42.026 41.878 41.634
2.7 40.647 40.601 40.467 40.244
2.8 39.308 39.267 39.144 38.941
2.9 38.051 38.014 37.902 37.716
3.0 36.870 36.836 36.732 36.563
3.1 35.757 35.726 35.632 35.475
3.2 34.708 34.679 34.592 34.449
3.3 33.717 33.690 33.610 33.478
3.4 32.779 32.754 32.680 32.558
3.5 31.891 31.868 31.800 31.686
3.6 31.048 31.027 30.964 30.859
3.7 30.248 30.228 29.170 29.072
3.8 29.487 29.469 29.414 29.324
3.9 28.763 28.746 28.695 28.611
4.0 28.072 28.057 28.009 27.930
4.1 27.414 27.399 27.355 27.281
4.2 26.785 26.771 26.730 26.661
4.3 26.184 26.171 26.132 26.068
4.4 25.609 25.596 25.560 25.500
4.5 25.058 25.046 25.012 24.955
4.6 24.529 24.519 24.487 24.433
4.7 24.023 24.013 23.983 24.932
4.8 23.537 23.527 23.499 23.451
4.9 23.069 23.060 23.033 22.988
5.0 22.620 22.611 22.586 22.544
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Table 4 (continued).

X 0.0 0.1 0.2 0.3

5.0 22.620 22.611 22.586 22.544
5.1 22.187 22.179 22.155 22.116
5.2 21.771 21.763 21.741 21.703
5.3 21.370 21.363 21.341 21.305
5.4 20.983 20.976 20.956 20.922
5.5 20.610 20.603 20.584 20.552
5.6 20.249 20.243 20.225 20.194
5.7 19.901 19.895 19.878 19.849
5.8 19.565 19.559 19.543 19.515
5.9 19.239 19.234 19.218 19.192
6.0 18.925 18.920 18.905 18.879

The Fresnel equations in reflection (1, 12—13—16) are all

written in the following manner: q-el$ = £— ï*/  
y are positive numbers).

The reflectivity is

7? = o2 = 1 + .r2 + t/2 —2 .r
1 + .r2 + y2 + 2 .r

(,r and

(1, 17)

and the phase change ó at reflection is determined by

(7 ó = (1, 18)

To calculate (y0, <50) at normal incidence and (qs, ôs); (qp, ô ) 
at oblique incidence, mathematical tables of @ (1, 17) and 0(1, 18) 
as a function of (.r, y) would have been of great value.

(0 < y < 20 and 0 < ,r < 2,0).

By calculation of o intervals in .r: 0.01 and in y: 0.1 and by 
calculation of <5 intervals in x: 0.1 and in y: 0.01. However, 
such mathematical tables are not available.

In this paper only a small table of ó as a function of (v, x) 
is given (Table 4).

When once r is calculated, t = U el@ can most easily be 
calculated from (1, 4—5—9) by means of A Table for Use in the 
Addition of Complex Numbers calculated by Jorgen Rybner and 
K. Steen berg Sorensen [4].
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§ 2. “Fresnel’s Factors” for a System of Thin Layers.

We consider a plane infinite incident wave of light; just before 
it reaches System I tig. 2 the s or p component of the electric 
vector at the point A we shall denote EA (complex number).

A system of thin layers I sandwiched between material 0 and material 1. System I 
may consist of one or more thin layers, the thickness of each being less than a 

few wavelengths of light.
E: s or p component of the electric vector.

After reflection from System I the component considered has now 
at the point A the value and after transmission through 
System I the value E\P at the point B. We now define the Fresnel 
factors (r, t) for the system of thin layers I by the following:

Direction of light: 0 —> 1 and s and p components still considered 
separately (indices not written).

When the direction of the light is the opposite: 1 —> 0 the 
Fresnel factors belonging to I are defined by

and /io
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Another system of thin layers sandwiched between material 1 and material 2.

Next we consider a second system of thin layers II (fig. 3). 
I'he Fresnel factors of this System II are defined in the same 
way as for System I by:

E(B) E(r)
r12 = —; t12 — — (direction of light: 1 -> 2)

Ec Ec
and

E^
r21 = ; f21 = c (direction of light: 2 -> 1)

Ed Ed

Now Systems I and II are combined to form a new system 
of thin lavers I ■ II as shown on fig. 4.

E(li}
It is now easy to express the Fresnel factors r02 = -----Ea

t02 =-----belonging to I + II by the Fresnel factors r01,
Ea

and

foi»

r10, /10 and r12, t12; ^21» hi, belonging to Systems I and II, 
respectively.

If we consider the oscillations of the plane (infinite) wave 
which takes place in the layer between Systems I and II, we 
find by superposition of the wave systems in reflected light at 
point A directly from fig. 4 (by considering the plane wave front):
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II.
Material 1 forms

System I (fig. 2) and System II (fig. 3) combined to make a new System I + 
a thin layer with thickness d between I and II.

From which follows: 

(2, 1)

with
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2 Ti n t
z

2 d cos / - 4 ri dn t cos /
(2, 2)

(derived directly from fig. 4).
In transmission we find in the same way by superposition of 

all the plane waves oscillating between I and II:

from which follows:

t (2, 3)02

^02

1 7'12’r10’e

m = 0

X
*>

The reflectivity of System 1 -I- II (with direction of the incoming 
light 0 2) is

^02 = r02 * r02 (2, 4)

(r02 means the complex conjugate number of r02).
The transmitted energy through I + 11 can be derived from 

Poynting’s theorem of electrodynamics [1] to be

_ - n2 cos /2
02 — ‘02’ ‘02 * »n0 cos tp (2, 5)

where /2 is the angle of refraction in material 2.
To derive r20 and f20 we only have to interchange the indices 

0 and 2 in (2, 1) and (2, 3).
'fhe following relation is valid:

^01 ' ^12 

tlO ’ ‘21 (2, 6)

The fundamental formulae (2, 1—3) have been developed by 
Abeles [5] in much the same way as here by summing an 
infinite system of interfering wave systems. Recently, however, 
IsHiGURO and Kato [6] have developed (2, 1—3) directly from the 
boundary conditions of electrodynamics by using a matrix 
representation. This rigorously proves that (2, 1—3) are valid 
also when material 1 is absorbent, with an index of refraction
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V — ix. In this case we have to pul

•r = ■ (I (a — ib) ,Á

where (a, b) are determined by (1, 10—11), and we obtain
4 it d-b . 4nd-a

First we consider a special case of the fundamental equations 
(2, 1—3), where System I is only a boundary (all layers in

Fig. 5.
The direction of the light is the opposite of that used in fig. 4.

System I have zero thickness) and System II consists of in — 1 
thin layers (fig. 5). In this special case we obtain from (1, 6—7)

"m + 1, m rm, m + i and tin_|_ 1, In‘ tm' m + £ rmt, ni■ rm> m + i 1

and when this is introduced into (2, 1) and (2, 3) and when the 
notations r12 = rm j0 and t12 = tm>0 are used, we get the fol
lowing fundamental recurrence formulae: (s or p component)

(2, 7)
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i,o — (2, 8)

_ (lni'nni'WS Xm z4) q\
æzzi « ' '•’)

m + L, m > m + í , ni aie determined by (1,2 3) (when z?0 = n,;) . i 
7h = nni Xni+1 = <P and Xm = X are introduced),

r(s)1 ni + 1, ni
__ nm + ! • cos Xm + t — nm ■ cos %m

(2, 10)
nin + r cos + t + nm • cos %m

„(P)1 m + 1, ni
nm ' cos Xm _l i nm £ • cos Xm

(2, 11)
nm ' c os Xm _|_ i -f- nm i • cos Xm

/(s)Lm +1, m — 1 I r(s)— 1 1 1 in + 1, in (2, 12)

ftp)1 in + 1, m — /il r(p) \— V *1  7m + 1, nJ (2, 13)

The reflectivity of the system is determined by:

+1,0 7 ni + 1,0 * rm + 1,0’ (2, U)

the energy transmitted through the system is:

7ni +1,0 ^ni + 1,0 ' hit + 1,0 '
no cosxp

nm + i-cosZ„l+1 (2, 15)

and all other optical properties (such as phase change by 
reflection, transmission, etc.) of a system of in thin layers 
(absorbent or not) can be calculated when dm and nm are known.

From the fundamental formulae (2, 7—15) it is now easy to 
show that the following relations are valid:

(.$ and 0 components) (2, 16 a)
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1 + r
t(p) m + 1, O

(p) m + 1, O
(p components) (2, 16 b)

and

/^•cos/m
+ 1 ' COS Xm i

1 — r(p)1 rm+l,0
1 4- r(p)1 i jfm + l,0

nnt + t • cos %,n . /1 — r(¿ 0 • 
nm • cos %m + 1 \ 1 + r(¿ 0 • e~lXml

(2, 17 a)

(2, 17 b)

Further, if the upper layer m (with thickness dril) is transparent 
(dielectric layer), we get

nm+i- cos
A (1 rm+l,O'rm+l,o)
Xm + 1’ ----=--------- -------------

tin + 1,0' tm + 1,0

COS Xm'

(2, 18 a)

(valid both for .$■ and p components).
By means of (2, 14—15) this can be expressed by

(2, 18 b)

i. e. if to a system of thin layers (absorbent or not) is added one
1—7?

or more transparent layers, —remains constant. This theorem 

has first been proved to be generally valid by F. Abelès [7].
For only one layer we deduce from (2, 6) and (2, 10—13)

?20 — *02 cos %2 

«o cos Xo’

and by induction we get generally for a system of m — 1 layers

tm , 0 ^0, m
77m • COS Xm
^o-cos Xo

(2, 19)

Dan.Mat.Fys.Medd. 29, no. 13. 2
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The transmission through the system is (2, 15) 

i. e. at a system of thin layers the transmission remains the same 
if the direction of the light is reversed. (The layers can be absorbent 
or not, the material above and below the system of thin layers 
must not be absorbent). Other general proofs of this theorem 
have been given by Mayer [2] and Abeles [7].

§ 3. Interference Filters with Two Systems of Reflective 
Layers I and II. (Spec, two silver layers).

An interference filter can very generally be defined as a thin 
dielectric layer enclosed between two strong reflective systems 
of thin layers 1 and II (fig. 6).

We now make the assumption that the reflectivity and the trans
mission (and phase change by reflection or transmission) of each

of the systems 1 and 11 considered separately, only show a small 
variation with the wavelength Í within each spectral region of — j 

or expressed more simply: I or II must not be interference filters 
themselves.
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For this simple type of interference filters many general 
properties can be derived directly from (2, 1—3).

If in (2, 1—3) the following substitutions are made:

roi — |/-^oi' e 01 7’io — |/Bio‘ e 10 7’12 — |/^i2’ ß and

^01 = [ ^01' ß1^"1 110 = I ^lO’ß1^10 ¿12 =

(ó is the phase change at reflection and ß the phase change at 
transmission) and if we further introduce

(J.eia = 1 __  ^01 ‘ *10  — 1 __  1/^01 ' ^10 . ^(ßoi -- Z?io~&i
r01’r10 I /Voi’^10

<5I0) (3, 1 a)

and
U — I Bio ’ Bj2

y — æ — <\o — ^12 >

(3, 1 b)

(3, 1 c)

we get the following general formulae:

r02 = |-B02(Â)-eiô-(Z) |/BO1(1 -oR-e~i(v-a)) eiôn
(1 -R-e~iy)

t»2 =
~ (l-R-e~iy)

(3, 2)

(3, 3)

The intensity of the reflected light R02 (A) and of the trans
mitted light I (A) (in proportion to the intensity of the incident 
light I^0’ — 1 or 7^0) — 1 ; s and p components are treated separately) 
are from (3, 2—3) and (2, 4—5) determined to be:

Bo2 (Â) B01 (1 — 2 oR cos (y —-a) + (oR)2) 
(1 — ‘2 R cos y + R2) (3, 4)

(direction of light: 0 -> 2), 
and if we define

T.
7h ' cosj t
n0 cos <p and •cos %2

711 C0S X 12

2*
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we get the intensity distribution for the transmitted light

I (A) = T ■ T■*1  2
1 — 2 R cos y + R¿ (3, 5 a)

or written in a more convenient manner

/(Å) = (3, 5 b)

(/ (A) will according to (2, 20) be the same if the direction of 
the light is reversed).

The wavelengths Â/n at which I (7) reach a maximum are 
determined by

y = 360° (m — 1 ) in = 1,2, 3

and the wavelengths A„l + 1 at which I(z) becomes a minimum bv

y = 180° (2 ni — 1) in = 1, 2, 3

77ie Determination of y (Â) or of Å (y).

This determination 
in the neighbourhood

is important 
of Ám.

in calc id a ting Z„( and

y =
360 9 /

• 2 dii^- cos/ ~ (^10 + ¿12)
J (when y is mea- 
I sured in degrees)

/(Â)

or
360 + y 1

360 = A 2 d/?! cos / 4- (360 —(ó10 + ó12)) /
360 (3, 6 b)

d01 and ô12 are dependent on the wavelength Z. 
We now define

, ^360 — ôl0 (2) — ô12 (A)
(3, 7)

By introducing Z (Â) and Zni (corresponding to y = 360-(/n —• 1)) 
into (3, 6 b) we get the following fundamental equations:
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and
rnÅm = 2 dnx- cos / + Z (2m) (3, 8)

360 + U 1 z - , ry z ry z 1
360 = I (m ’ (A)— ^(An))- (3,9)

If I and II (fig. 6) each consist of only one silver layer, Z (À) 
will only show a small dependence upon 2 (fig. 8 below). If, 
however, I and II consist of a combination of one silver layer
and several quarter wavelength layers of dielectrics with low and 

2
high index of refraction or of —-dielectric layers alone, the 

dependence of <510 + d12 upon Â in the neighbourhood of À/n 
must in each case be calculated by means of (2, 7) and next 
y (x) by (3, 6 a). (The results of such calculations of y (2) are 
shown in fig. 49 p. 86 and in fig. 51 p. 90).

From (3, 5—9) we are now able to calculate I (A) in detail. 
However, it will often be sufficient to describe I (2) by means 
of the following quantities : 

l. The values of (from (3, 8) or direct from (3, 6 a));

2. The values of

Anax (An) (1-/?(Im))2 ’
(3, 10)

3. The contrast factor

Anax

Anin

(An) ' ^2 (^ni)

1 -«Um)
,11a)

If R and T with sufficient accuracy are independent of À 
(within the wavelength region + | < Â < An—the contrast 

factor is simply expressed by

Î’=7”!Ï = O2; (3,11b)
min ' '
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4. The half intensity band width IU2 defined by

and the tenth intensity band width VVr10 defined by

11 we introduce y — 360°(m—1) + y*  (where yk is a small 
angle corresponding to the À'th intensity band width H\.), we find 
(from (3, 5 b))

T T1 i 1 a
(1- Ä)2

and this is by definition equal to

1 * 1
k'1 = Á-’(l Ä)2’

degree.
In the neighbourhood of X = A,n we have approximately

So we obtain

4 J? . t) / \- sin- — =
(l—Ä)2 \2/

/ ! , • n- (1-Á' -1 and sin —- = - k (3, 12 a)
2 J/Æ

or approximately
180 (1 R) I/Å-—1 yk =------ ----------¿2------- (3, 12 b)

1 R

i/(A) = 3600-(/n—1—/•-- —j, where f =
■ m, (3,13a) ; 360 v'■m

and as y = 360-(m 1 ) + yk corresponds to — z =

we obtain 7k
180

and from (3, 12 b) we finally get
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(1-Ä) 
TT • p Z?

and in particular we get

and
f

(1-Ä)
71 • I R

Wlo = 3-W2.

(3, 14)

(3, 15)

When I and II (fig. 6) are silver layers we have approximately 

y (A) = 360’1------ —— 1) according to p. 21 and in this case

we simply get
f = m (in = 1, 2, 3.............).

In case of filters where I and II (fig. 6) consist of several layers 
f will be different from an integer.

If the mean reflectivity R = |/F10 • F12 is increased W2

(3, 14) will decrease and F = -ma- (3, 11) will increase. However,
■‘min

because of absorption in I and II (fig. 6) /max (3, 10) will rapidly 
decrease. If we assume that the absorption in both I and II is 
A = (Alo = A12), /max is expressed by:

(3, 16)

It is now easy to show that for a definite (constant) value of 
R = |/F10 F12 (i. e. for a definite value of the contrast factor) 
Anax will reach its highest value when F12 = Rlo = (R) (i. e. 
when 1 and II have the same reflectivity; for a definite (constant) 
value of /?12, however, /max will reach its highest value when 
/?io = F12.(l -A)2).

From the above considerations it is obvious that one of the 
greatest problems in producing interference filters is that of 
finding a material (consisting of one or more thin layers) with 
a sufficiently high reflectivity R throughout a spectral region of 
reasonable length (as great as possible).
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In most applications an interference filter is used at normal 
incidence (99 = 0). A small deviation Atp from parallelism of 
the incident light gives rise to a shift, say AÀm, towards violet 

according to (3, 8). If —is sufficiently small 
in

we get

5. 1 (A y)2 i
2~^\ (3, 17)

However, the dependence of Z upon wavelength often makes 
this calculation of AÀm more difficult.

At an oblique angle of incidence all the formulae (3, 1—16) 
must be written separately for s and p components. (3, 8) espe
cially will split up into

and
77?. A¡;V = 2 Gfrq cos / + Zs (A^) (3, 18 a)

72?4^ = 2 dnx cos / + Zp (Â^). (3, 18 b)

Because of the difference in and <5p (evident from (1, 12—14)) 
Zs and Zp will usually be unequal and result in a splitting up 
into two transmission peaks at and respectively, the one 
polarized perpendicular upon and the other parallel to the plane 
of incidence.

At an oblique angle of incidence <p a small deviation Ay in 
(he angle of incidence will give rise to a shift in wavelength of 
AÅni determined by means of the derívate of (3, 8):

(Z regarded as constant and angle of incidence y in material 
with index of refraction z?0).

It should be noticed that this is a first order deviation in Ay 
as opposed to (3, 17) at y = 0.
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The Properties of the Filter (fig. 6) in Reflection. 
If no absorption takes place in I and II we have

I (X) + Ro2 (2) = 1 (conservation of energy)

(in this special case we have Ro2 = R20 according to (2, 20)). 
From (3, 4—5 a) we get

n (1—flio)G—-K12) i /?oi(l—2crJ?-cos(ÿ-a) + (aZ?)2)
7(X) fi02(X) 1-2ÄCOSZ/+1?2 l-2Rcosy + R2

with R = J/jR10-R12.
This will only be equal to 1 if

as o- eia at the same time must satisfy (3, 1 a).
With a thin metal layer (such as Al or Ag) absorption takes 

place in I and then a will no longer be zero, but with layers 
which are almost opaque a will only have a small negative value 
(less than one degree). In this case we get as a first approximation

o = - ----— (A absorption in I). (3, 21)
Rqi

The condition for obtaining R02 (Â) = 0 at a definite wavelength 
is (from (3, 4))

or
1 — 2 a R cos (y — a) + (aRf — 0

cos (y — a) = l+^Rf
2 oR

This quantity is always > 1, i. e. /?02(Â) = 0 only if

g« = I (R = t«»«!,).

and this takes place at

y = cc° 360° (m — 1).

(3, 22)
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If I is not absorbent

in this case the condition for zero intensity of /?o2(Z) is f?12 = /?10 
(it is immaterial whether II is absorbent or not).

If 1 is absorbent and 7?10 = f?12 no value of Â exist at 
which Jî02(Â) = 0; however, it is possible to find a value of/bo 
at which the equation (3, 22) is satisfied (as a first approximation 
we get /?oi = (1 —A)2- fb2)- In this case /?02 (Â) = 0 is 
satisfied at wavelengths determined by y = « + 360-(m — 1) in 
combination with (3, 9). The wavelength at which the maximum 
of transmission occurs is determined by y — 360-(m—1). Hence 
it follows that a small difference results between ¿max in transmis
sion and 2min in reflection. The same w ill be the case if /?10 = /ba 
and I is absorbent.

The Fabry-Perot Filter
The simplest of the types of interference filters treated above 

is the Fabry-Perot filter which simply consists of two silver 
layers M with a dielectric layer L2m ’n between. (L2m means a 

Å2 in- - layer). The name of this filter originates from the fact 
4

that the filter is a Fabry-Perot interferometer with a very small 
spacing between the reflecting surfaces. The first production and 
description of filters of this type are due to Geffcken [8].

It is important to note that the filter blank need not be more 
accurately polished than an ordinary optical surface as the 
different thin layers all follow the irregularities of the blank. 
(It is unnecessary to use an interferometer plate as filter blank).

In order to calculate the properties of this filter the first step 
is to make numerical calculations of /?, 7’, ô, ß, o, cc......... , etc.,
for silver layers of different thicknesses t and at different wave
lengths ?..

The reflectivity /?x and the phase change ô0 at the boundary 
between an opaque silver layer and a dielectric with an index 
of refraction n0 are determined (at normal incidence) by (1, 17—

V . X
18) when we put x—ly = ——i—. When n0 increases /? 

n0
decreases, which means that only dielectrics with a low' index 
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of refraction can be used for interference filters of the type 

ML2mM. (L means a —layer with low index of refraction).
4

In the numerical calculations (the results of which are given 
in Tables 6—13) it is assumed that n = 1.36. on both sides of 
the silver layer (fig. 7). In practice one side of the silver layer is 
bounded by glass (or cement) with n = 1.5; the influence upon 
/?10 and T will, however, be small as compared with the experi
mental uncertainty in determining v— ix. n0 = 1.36 has been 
chosen because this corresponds to the index of refraction obtained 
by slow evaporation of cryolite. The index of refraction of MgF2 
too is only slightly higher than 1.36.

The different values of v—ix published [2] vary greatly, 
depending partly upon the conditions by producing the silver 
layers and partly upon the different optical methods by which 
v—ix is measured. The most reliable values of x seem to be 
those published by Schulz [9], which were determined by measu
rements of <50 al the boundary between the air and a nearly 
opaque silver layer. Furthermore from accurate measurements 
of R and T at nearly opaque silver layers published by Kuhn 
[10] v can be calculated from — R T. We get

1.02 + x2 /I —7?
r = ------------- • I-------- ”

2 \ 1 + R
' X

when as a first approximation v2 = 0.02 is adopted.
The values of v—ix employed in the following numerical 

calculations are given in Table 5.

Table 5.

Å V X 2? 00
3800 0.20 1.77 0.82
4000 0.18 1.95 0.86
4500 0.14 2.42 0.92
5000 0.14 2.89 0.94
5500 0.15 3.36 0.95
6000 0.15 3.82 0.96
6560 0.13 4.27 0.97
7100 0.14 4.68 0.97
7680 0.15 5.11 0.98



28 Nr. 1 3

Table 6. Â = 4000 Å V—ix = 0.18 — i 1.95.

t
R T A

/lA/fV
180—5° r <Tin Å \1-/J \1 —JR/ — a

150 .1852 .7179 .0969 .7762 2.12 75°13 7°38 4.8495 11°92
200 .2881 .5956 .1163 .6999 3.27 73.44 8.79 3.0427 10.48
250 .3889 .4809 .1302 .6194 5.17 72.16 9.72 2.2145 8.98
300 .4802 .3801 .1397 .5347 8.11 71.23 10.24 1.7719 7.53
350 .5585 .2954 .1461 .4477 12.5 70.56 10,43 1.5118 6.21
400 .6231 .2266 .1503 .3615 18.6 70.11 10.36 1.3489 5.05
500 .7155 .1297 .1548 .2080 36.4 69.61 9.66 1.1706 3.25
550 .7469 .0972 .1559 .1475 47.6 69.49 9.13 1.1211 2.57
600 .7709 .0725 .1566 .1001 59.8 69.42 8.52 1.0865 2.03
oo .8414 .00 .1586 .00 69.48

Table 7. Â = 4 500 Å v — ix — 0. 14—z 2.42.

t
R T A

T
180—5 ß ain Â U r) \i— /?/ — a

150 .2560 .6662 .0778 .8017 2.85 70.29 14.39 3.5903 7.69
200 .3838 .5266 .0896 .7304 5.04 67.08 17.40 2.3613 4.66
250 .4997 .4042 .0961 .6527 9.00 64.64 19.57 1.7997 5.18
300 .5970 .3038 .0992 .5683 15.7 62.84 21.06 1.5012 4.11
350 .6748 .2250 .1002 .4785 26.5 61.54 22.00 1.3271 3.22
400 .7351 .1649 .1000 .3876 42.9 60.62 22.53 1.2191 2.50
500 .8150 .0869 .0981 .2204 96.2 59.57 22.74 1.1031 1.47
oo .9060 .00 .0940 .00 58.55

Table 8. A = 5000 Å v— ix = 0.14 — i 2.89.

t 
in Â R T A

/ T y

I-*
 1 ►—

*>

1 + 180 —ó ß a — aU-*/
150 .3290 .5955 .0755 .7878 3.92 64.56 20.62 2.8009 6.21
200 .4717 .4456 .0827 .7114 7.76 60.35 24.63 1.9374 4.88
250 .5902 .3247 .0851 .6279 15.1 57.29 27.34 1.5439 3.81
300 .6825 .2328 .0847 .5375 28.1 55.12 29.12 1.3363 2.825
350 .7516 .1652 .0832 .4422 49.7 53.61 30.49 1.2160 2.119
400 .8022 .1165 .0813 .3470 83.0 52.56 31.17 1.1422 1.582
500 .8649 .0573 ,0778 .1799 190.6 51.35 31.57 1.0644 0.873
oo .9282 .00 .0718 .00 50.32
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Table 9. 2 = 5500 Å v—ix = 0.15—i 3.36.

t 
in Å R T A i T V /1 + 1R\2

1 /? * 180—Ô ß o — a

150 .4009 .5234 .0757 .7633 5.44 59.11 26.22 2.2978 5.291
200 .5495 .3713 .0792 .6792 11.8 54.29 30.83 1.6697 3.932
250 .6634 .2582 .0784 .5884 24.4 50.95 33.92 1.3847 2.872
300 .7462 .1779 .0759 .4913 47.3 48.67 35.89 1.2349 2.087
350 .8051 .1220 .0729 .3914 85.8 47.13 37.09 1.1488 1.513
400 .8463 .0834 .0703 .2976 144.3 46.10 37.76 1.0965 1.097
500 .8951 .0389 .0660 .1377 326.4 44.94 38.10 1.0422 0.575
OO 9399 .00 .0601 .00 44.00

Table 10. Â = 6000 Å v—ix = 0.15 — / 3.82.

t 
in Ä R T A i T V 180—ô ß cr — aU-*/

150 .4690 .4609 .0701 .7535 7.65 54.47 31.27 1.9771 : 4.222
200 .6179 .3119 .0702 .6661 17.93 49.28 36.27 1.5007 2.986
250 .7239 .2087 .0674 .5712 38.98 45.82 39.48 1.2853 2.100
300 .7965 .1392 .0643 .4681 77.93 43.54 41.48 1.1726 1.479
350 .8466 .0930 .0604 .3676 144.9 42.03 42.66 1.1082 1.045
400 .8803 .0622 .0575 .2698 246.7 41.04 43.31 1.0693 0.741
500 .9188 .0278 .0534 .1175 558.4 39.96 43.63 1.0296 0.374
OO .9516 .00 .0484 .00 39.12

Table 11. z = 6560 Å v—ix = 0.13 — i 4.27.

t 
in Â R T A

/ T Vo 180—Ô ß cr — a' 1 R '

150 .5291 .4149 .0560 .7764 10.5 50.86 35.76 1.7811 2.971
200 .6748 .2709 .0543 .6937 26.5 45.40 40.96 1.3991 2.084
250 .7728 .1763 .0509 .6022 60.9 41.87 44.39 1.2265 1.386
300 .8375 .1152 .0473 .5023 127.9 39.59 46.45 1.1364 0.956
350 .8802 .0756 .0442 .3975 246.3 38.10 47.66 1.0850 0.668
400 .9084 .0498 .0418 .2956 434.1 37.14 48.36 1.0542 0.466
500 .9398 .0218 .0384 .1305 1038.3 36.09 48.80 1.0228 0.230
OO .9654 .00 .0346 .00 35.31
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Table 12. x = 7100Å v—ix = 0.14 — i 4.68.

/ 
in Â r T A

1 + fiA
180—ó ß CT — a

150 .5711 .3739 0550 .7600 13.4 47.63 39.00 1.6518 2.669
200 .7104 .2375 0521 6726 34.9 42.13 44.34 1.3324 1.770
250 .8004 .1517 0479 5776 81.4 38.65 47.62 1.1881 1.187
300 .8582 .0977 0441 4747 171.7 36.43 49.60 1.1128 .808
350 .8957 .0634 0409 3695 330.3 35.00 50.77 1.0701 .558
100 .9202 .0414 0384 2691 579.0 34.09 51.41 1.0445 .386
450 .9363 .0271 0366 1810 924.0 33.50 51.70 1.0286 .269
500 .9470 .0173 .0357 .1066 ■ 1349.5 33.11 51.78 1.0180 .182
oc .9685 .00 .0315 .00 32.38

7680 Å V —ix = 0.15 — i 5.11.Table 13. x

t 
in A T A ' ' I2 180—<5 ß CT — a

150 .6100 .3363 .0537 .7436 17.0 44.63 42.01 1.5489 2.384
200 .7419 .2085 .0496 .6527 4 5.5 39.14 47.34 1.2794 1.543
250 .8241 .1310 .0449 .5544 107.5 35.75 50.54 1.1578 1.017
300 .8756 .0834 .0410 .4498 227.3 33.62 52.44 1.0944 .684
350 .9086 .0537 .0377 .3447 436.1 32.26 53.54 1.0585 .468
400 .9299 .0348 .0353 .2464 757.9 31.39 54.14 1.0370 .321
450 .9438 .0227 .0335 .1632 1196.3 30.82 54.40 1.0237 .223
500 .9530 .0148 .0322 •0997 1726.7 30.46 54.45 1.0153 .155
OC .9713 .00 0.287 .00 29.78

Tables 6—13 are calculated by means of (2, 7—9) and (1, 16 
18), which in the special case indicated in tig. 7 become:
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and

]/ R • ei ô
1 — eix

(3, 23)~ 101 . 2 — ia
1 — ^oi-e

]/T-eiß
_ (l-4)e-í¡

(3, 24)
1 -rjl-e-'*

1
\n0 nJ

(3, 25)1 01
1 + — — z —

"o 7,0

e~ix
4nxZ Anvt

= e (3, 26)

To calculate R (2) of a Fabry-Perot filter we must further cal

culate aeia = 1 —— e'(2ß—2<5) from the calculated values of (7?,
R

and (7\ ß).
All these calculations have been carried out directly from 

(3, 23—26) by means of Rybner’s tables [4].
In the calculations it is assumed that v—ix at a definite 

wavelength 2 is independent of the thickness t of the silver layer.
The formulae (3, 23—26) depend only upon the variable 

quantities in the combinations V an(j v (^)----(^) /
n0 A

If the index of refraction n0 is changed to n' the tables can 
still be used if the À scale is changed to 2' and the t scale to 
the transformation is determined by

v(Å') — ix(Å') _ v(Å)—ix(Å) and y(2')—z%(2') = r(2)—zx(2) f
n0 n X 2

i. e. f = — • — • t, and if approximately v(2)— zx(2) — (Áq— 
n0 À

then 2' = — • 2 and t' = t. (This will be a good approximation 
n

for Ô because it only slightly depends upon r).
, /180 —<5O(2, i)\ ,From Tables 6—13 graphs of Z (2, /) = Í------- ------------j-2

can be made for different thicknesses t of the silver layers (fig. 8). 
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If the filter consists of two silver layers of different thicknesses 
t' and f"

360 — d0 (/') —d0(f")
360

= -<z(z15 t'y+z^, i")).

These graphs (fig. 8) are important because it is possible 
when Z (Z) is known to determine the optical thickness nd which 

r= A

corresponds to a definite Am. (From (3, 8)). Inversely, if are 
measured spectroscopically and cZ is measured for one definite 
wavelength, Z (z) can be determined directly by experiment. 
(This has been done by Schulz [9]; with n = 1 this gives a 
determination of x (Á)).

The half intensity band width W2 has not been calculated 
in the tables for each t, A value. For this reason a table of 

IV2 (/?)
(1 — R) 5500

x]/R-2

is added (Table 14) corresponding to a filter with Åm — 5500 Å 
and m = 2. From this table IT? corresponding to another /.m
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can easily be calculated by means of

W'(7?) = W2(7?)- ____

in -2750 '

R IV 2 in Å

0.75 252.7
.76 241.0
.77 229.4
.78 218.0
.79 206.8
.80 195.7
.81 184.8
.82 174.0
.83 163.3

Table 14.

R Wa in Å

0.84 152.8
.85 142.4
.86 132.2
.87 122.0
.88 112.0
.89 102.1
.90 92.3
.91 82.6
.92 73.0

R W2 in Å

0.93 63.5
.94 54.2
.95 44.9
.96 35.7
.97 26.7
.98 17.7
.99 8.8

B, T, y (Â) are calculated it is possible to calculate

(3, 27 a)

When
line shapes at different wavelengths and thicknesses of the silver 
layers. In all the following graphs it has simply been chosen to 
calculate the wavelength scale by means of (3, 9) with the approx. 
Z (Â) = Z If y = 360-(m—1) + y (y a small angle),

360 in •
~ 36012? + /

and this combined with (3, 5 b) 

/(Â) = T2 1

(1-Ä)2 (3, 27 b)

determines the intensity distribution in the neighbourhood of a 
peak.

Furthermore R and T of the silver layers are regarded as 
constant in all the following graphs throughout the spectral region 
considered in the graphs. If the variation of R, T, etc., upon 
wavelength within the line were taken into account, the calcula
tions would be rather tedious and only result in deviations in 

Dan.Mat.Fys. Medd.29, no.13. 3



34 Nr. 13

2nd order filter. 1F2 calculated from (3,14) is 181 Â and U’1O = 3-W2 = 543 Å 
V — ix = 0.15 — i 3.36.

3515

J = 0.37
max

y = 55OOÂ

max

n=lJ6
Fig. 10.

(All measures in Ä).
Fabry-Perot filter 2nd order. The peak of the 1st order is at about 10800 Å and 
the peak of the 3rd order at about 3750 Â. The line shape (2nd order) is shown 

in fig. 9.
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M LM
Ag Ag

1ÔÔ0

J = 0.50max '

A = 6560À

300 300 

n = 136
Fig. 12.

1st order filter (m = 1) (the peak of the 2nd order is at 3400 Â).
(Curve A in fig. 11).

3*
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the “wings” of the line and even here the effect is small as com
pared with the experimental uncertainty in v— ix. The devia
tions will be the greatest for a filter of the first order.

In fig. 9 is shown the line shape of a Fabry-Perot filter of the 
2nd order, and fig. 10 shows the relative thicknesses of the thin 
layers. In fig. 11 line shapes have been calculated with different 
thicknesses / of the silver layers and with peak transmission at 
6560 Â. The rapid decrease in Imax with increasing t is apparent.

Furthermore is it possible to calculate 77 (Â) for a filler of the 
type ML2mM by means of (3, 2) or (3, 4). (3, 2) becomes

= ~ ';(« = «). (3,28)

The wavelength scale is calculated by means of (3, 27 a). Fig. 
13 and in fig. 14 show the results of such calculations of the 
intensity distribution 7? (A) in reflected light (at normal incidence).

In fig. 13 the same filter is considered as in fig. 11 Curve C 
in transmission. (Each silver layer has a thickness of 400 A;

7? (2) and I (2) for a Fabry-Perot filter with the silver layers of equal thickness 
(t = 400 Â).
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Fig. 14.
fí (Â) and I (z) for a Fabry-Perot filter. The silver layers are of unequal thickness 
(t" — 400 Â and t' = 288 Å) t' is determined in such a way that crT? = 1;

(R = l'Tî'T «")•

R — 0.908). The small negative value of « = — 0°.466 (Table 11 ) 
gives rise to an asymmetric line shape of R (Â). Furthermore 
it should be noted that the minimum value of R (A) turns out 
to be as high as 0.20 and the minimum is found at a wave
length a little higher than the wavelength at which I (Â) has a 
maximum in transmission.

In fig. 14 a filter M'L2M" is considered with the two silver 
layers of unequal thickness, t" = 400 Â and t’ = 288 Å is 
determined in such a way (from Table 11) that oR — 1; 
R — yR' R" = 0.864 (the reflection takes place from the t' side 
of the filter), R (Â) — 0 at y = a = — 1 °.060 (see page 25). 
This calculation shows that it is possible to extinguish a spectral 
line by means of a reflection interference filter. Imax = 0.34 
(Anax = 0.45 of a filter with the two silver layers of equal thickness 
and with a reflectivity equal to the mean reflectivity of the filter 
in fig. 14. R = [R' R" = 0.86).

Reflection interference filters with an opaque metal layer at 
the bottom (e. g. aluminium) have first been treated in theory
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Fig. 15.
A Fabry-Perot interference filter used as phase plate. Unbroken lines: A. The 
filter is on one side bounded by air. B. To lhe filter is added a thin dielectric 
layer in such a way that the phase difference at the peak is —180°. Broken line: 

7 (Â) for the filter (the same as the filter in fig. 10).
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and practice by Hadley and Dennison [11]. These reflection 
filters have the great advantage of also being applicable to the 
infrared and ultraviolet spectral region, but have the disadvantage 
that rather broad spectral regions are reflected.

By means of (3, 2—3) and Rybner’s tables [4] it is furthermore 
easy to calculate the phase change at reflection and transmission, 
as a function of the wavelength, in the neighbourhood of a peak. 
As the phase change at transmission by interference filters is of 
special interest in the phase contrast microscope as shown by 
Locquin [12], a calculation has been made in the case of the 
filter in fig. 10. The results arc given in fig. 15. In the case of 
A the phase difference between P2 (light passing through the 
phase plate) and I\ (light passing outside the phase plate) is 
(from (3, 3))

C G) — ( (ßoi + ßiz) — — e G)j + -y- (21 + d) ; (3,29) 

t is the thickness of the silver layers and e (2) is determined 
from p- eie(Z) =1 — R- e~iy. — The phase changes al transmission 
through the silver layers are determined from Table 9. The 
approximations ß01 = ß12 = ß and ß = ß0 — k ■ Á have been
made. If, as in the case of B (fig. 15), a thin dielectric layer (with 
index of refraction n and thickness dß) is added to the phase 

plate, the phase difference
360

Â
• (n -—!)• dv has to be added

to C G) in (3, 29). In fig. 15 curve B, dr is determined in such a 
way that the phase difference is — 180° at = 5500 Å. The 
graphs correspond very closely to those previously published by 
Dufour [13], By the use of a combination of the type B (fig. 15) 
it is possible to change from a negative to a positive contrast 
of the image by a variation of wavelength.

Calculation of I(^)s and I (A) at an Oblique Angle of Incidence.
When the angle of incidence ç? is increased from ç? = 0, a 

shift of Zm towards violet, and a splitting up in two components 
and result. The first problem now is to calculate 

when n (Â) and v (A) — zx (z) are known. The calculation 
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is carried out by means of (3, 18): 

where

360

At oblique incidence we have

and 

•/

A first approximation of Zs
means of fig. 8 if (Â, /) are transformed to (A', /') by means of 
the equations

and Zp can now be determined by

2
and perhaps a third approx-

. ;0) zp + s

x(2) x(Â)-/- -- and ———- only 
n Â

means of (3,8) = 2 dn cos / + Zo (2^) with 2 dn =
~2

mffî—Z0(À$), (A¡J) corresponds to Åm at 9? = 0 and Z0(À(r^) is 
determined from fig. 8) and a second approximation by

^i) = JJxj.
n n • cos / ’ a;

(and analogous equations for the p component). 
/fs)-p ¿(p)

A first approximation of = -'ll, —can be calculated by

Ç_s = 2 dn cos/ + Zo

imation has to be determined (by means of (3, 8) and fig. 8).

Now it is evident from Table 4 that ô / , 180 —<5and Z = ---------- • A
\ 180 /

only show a small dependence upon v when as at silver v < 0.2. 
Z (Â)For this reason —— (fig. 8) can be regarded as a function of

A

and
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■ tS
X Gp)

• cos/;

are then determined by

/ <^pn

and

(4’ zp) by

- • / • cos %

"(4) = h G) ’ C0SZ;
4 mxh 
z ■ x(4)_

(3, 30)

(3, 31)

/where 2 = 2p + sj.

From (Xs, t'g) we now’ determine Zo (2S, (,) from fig. 8 and

and 2p is determined in quite an

we then get Zs ¡Xp + ¡\ = ~ • ZO(XS, ts). Finally 2S is determined
\ I

by mÅs — 2 dn cos/ + Zs^.p + s^

analogous way. b (2), 7z (2) are determined from Tables 1—3 
corresponding to x = z Mp+A (4 = 4 = 4? and 4=4?).

Now the same calculation must be repeated with 2S instead
of 2 in (3, 30) and 2p instead of 2 in (3, 31) and a further repetition 
may be necessary if (2S, 2p) deviate more than 20 Å from the 
previous approximation (for a filter of the first order).

Above, the index of refraction n of the dielectric has been 
regarded as independent of the wavelength and equal for both 
the s and p component. However, dispersion as well as birefrin
gence can easily be taken into account in the formulae (3, 30—31) 
if necessary.

When 2S and 2p have been calculated in the way mentioned 
above, line shapes can be calculated by (3, 27) when first the
.s and p components of Ii and T have been calculated by means 

of (1, 12—13) and (3, 23—24)

To show the applicability of the above procedure calculations 
(for different (p) have been made in the case of a Fabry-Perot 
filter (1st order) with 20 = 6560 Å, I — 350 Å and n — 1.36. 
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(At (¡p — O the line shape of this filter is seen in fig. 11 Curve B). 
The different approximations before reaching the correct values 
of Âs and Â are shown in fable 15 and the line shapes in figs. 
16—18.

Table 15. (Âo = 6560 Á)

<p 15° 30° 45° 60° 75°

From fig. 8 <

;(1)As + p............... 6466 6198 5836 5375 5028 Â

/2)
...............

2
6466 6206 5833 5440 5139

, (3)
As + p............... 5833 5435 5120

From fig. 8 
and

(3,30—31)

4* ’..................

j(l)
Ap .................

5632

6047

5106

5760

4695

5624
j(2)
As ..................
Â(2)

..................

5647

6038

5135

5770

4730

5565

Directly from j Ag .........
(3,23-24) C™.........

5642

6039

5130

5770

4720

5580

Calculated from ]
(3,32) / ■ • • 1.534 1.542 1.553 1.556 1.559

Hadley and Dennison [11 a] have used an approximate 
formula to enable a direct calculation of n from measurements 

2 I 2
of Ap + s = p 4 at oblique incidence.

2
From (3,6 a)

3(- • 2 dn — 2 d0(A0) = 360 (ni 1 )

and

180-(y + • 2 dn -cos/ — (5S. (Âs) + ôp (Â,,)) = 360 (in—1)
\As

they get
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Then the approximation 2ô0(Â0) = ós(xs) + ô/,(Âp) is introduced 
and the following formula results:

or

9

4
COS 7 = -

If this approximation should be useful then n calculated from 
(3, 32) by substituting the (Às, Zp) values from Table 15 should 
turn out to be about 1.36. However, as shown below in Table 15 
“n” calculated from (3, 32) is as high as 1.55. This shows that 
the approximation (3, 32) cannot be used (by filters of lower 
order) and this explains why Hadley and Dennison [11a] find 
values of n much too high. 2, and are not only dependent 
upon Zo (at 9? = 0), n and cp but also upon x(2), and this will 
particularly be the case for a filter of the first order (m = 1) 
as shown in figs. 16—18. At higher orders (m  8—10) the split
ting up Âp— Âs. is in times smaller, and the error in Âp + s in using
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<WZ> -í-
the approximation ÔO(ÂO) is m times smaller;

in this case Xs and Ap will be nearly independent of x(Â) and 
(3, 32) can be employed with a tolerable approximation.

(Âs, zp) can easily be measured by a spectroscope at various 
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angles of incidence and we hereby obtain information on n(z) 
and x(Â) (especially for a filter of the first order). Moreover, 
determinations of W2 and /max by means of a spectrophotometer 
fix R and T of the silver layers.

If the incident light is unpolarized and has the intensity 
/0 = 2 - /^0) = 2- I(Å) of the transmitted light is

/(A) = i
/(Â)
if I

(the ordinates of the s and p curves of figs. 16—18 have to 
be added together and divided by 2).

The degree of polarization (the s direction compared with 
/ (Â )the p direction) will at the wavelength be v - and the

degree of polarization at the wavelength Zp (the p direction
Z(Â )

compared with the s direction) -—— , this can easilv be read 
/(*„),

oil' figs. 16—18. If the Fabry-Perot filter should be used at 
oblique incidence to isolate a spectral line and simultaneously 
act as polarizer it would be best to use the p component.

Table 16.

n \
5° 10° 15° 30° 45° 60° 75° 80°

1.30 0.99775 0.99104 0.97998 0.92308 0.83913 0.74580 0.66927 0.65278
1.31 .99778 .99118 .98029 .92429 .84181 .75031 .67551 .65943
1.32 .99782 .99131 .98059 .92548 .84442 .75469 .68155 .66587
1.33 .99785 .99144 .98088 .92664 .84696 .75895 .68742 .67210
1.34 .99788 .99157 .99117 .92778 .84944 .76309 .69310 .67816
1.35 .99791 .99169 .98145 .92889 .85185 .76712 .69861 .68399
1.36 .99794 .99182 .98172 .92997 .85421 .77104 .70396 .68967
1.37 .99797 .99193 .98199 .93102 .85651 .77486 .70915 .69518
1.38 .99800 .99205 .98226 .93205 .85875 .77857 .71420 .70052
1.39 .99803 .99217 .98251 .93306 .86094 .78219 .71910 .70572
1.40 .99806 .99228 .98276 .93405 .86307 .78571 .72386 .71076
1.52 .99835 .99343 .98535 .94417 .88483 .82122 .77132 .76089
2.36 .99932 .99729 .99397 .97730 .95406 .93024 .91240 .90877
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Before leaving the theory of interference filters of the Fabry- 
Perot type, the Turner frustrated total reflection filter should 
be briefly mentioned. This ingeniously constructed filter (indi
cated by A.F.Turner [14] and [15]) is based on frustrated total 
reflection instead of reflection from silver layers and is constructed 
by evaporation on the hypotenuse surface of a flint glass prism, 
first a low index layer, then the high index spacer layer and again 
another low index layer, and finally another flint glass prism is 
cemented to the first. As no absorption occurs, R can reach a 
value so close to 1 that W2 can be as low as 10 A, the limit is 
set by the crystalline structure of the fluoride layers [16]. Because 
of the oblique angle of incidence (high value of /) two components 
(s and />) result, each with an intensity about 0.50. The filter 
has the disadvantage that it is of a limited area and that a very 
small deviation Í- j from parallelism of the incident light will 

result in a shift greater than - IV2 (follows from (3, 19)). Further

more, in most applications one of the components (s or p) must 
be extinguished by a polarizer. However, Billings [17] has tried 
to construct a filter of this type with a biréfringent material as 
spacer layer to avoid a splitting up in two components at a 
definite angle of incidence. The theory of a Turner filler is the 
same as for a Fabry-Perot filter, but the reflectivity must be 
calculated by special equations deduced directly from the 
Maxwell equations of electrodynamics [17] and [17 a].

Before more complicated filters are treated a short summary 
of the most characteristic properties of the Fabry-Perot filter will 
be given. The contrast factor F = ^n-'- is determined by the

Anin

reflectivity R alone, R < 1 —A, where A is the absorption coeffi

cient in the silver laver, i. e. F < | —
' 1 -

The half intensity band width IV2 can be made as small as 
40—50 A, when the order m is sufficiently high. However, to 
extinguish the neighbouring peaks it is necessary to combine the 
filter with another interference filter of lower order or with 
absorption filters, but then /max drops considerably. The most 
serious drawback of the Fabry-Perot filter is that the contrast 
factor F (for a reasonable /max) is only about 200 (Tables 6—13), 
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which means that this filter cannot be used for an efficient isola
tion of spectral lines. Moreover the colour will be impure (with 
an 7max as high as 0.40) on account of the spectral region far 
from the peak. For this reason it would be of some value to 
examine the possibility of making filters with higher contrast 
factors F consisting of three or four silver layers and two or three 
dielectric layers, respectively (with the same or multiple thickness).

§ 4. Interference Filters with Three Systems of Reflective 
Layers I, II, and III (e. g. three silver layers).

Three systems of thin layers are considered (fig. 19). As pre
viously when considering two systems we make the assumption 
that 7?, T, ô, ß, etc., belonging to each of the systems I, II, and 
HI, considered separately, vary only slightly with the wavelength 

or in other words I,

II, and III must not be interference filters themselves (e. g. each 
of the systems may consist of a silver layer combined with quarter 
wavelength layers of dielectrics).

Fig. 19.
The notations used are analogous to those used in fig. 6 

CT1.ei«i = 1 _ a2-eiU1 = 1 —
0)1 ‘ rio ^12 ’ r21
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If now Il + III is regarded as a single system (II in fig. 4) 
we deduce directly from the fundamental equations (2, 1—3) 
when Index 2 is interchanged with Index 3:

_ 7'oi (1 — rio ' ri3 ’ ‘ e IKi) , __ foi ’ ^13 ‘ 1 2

703 — ---------------- I------------------------------ZTTr---------------- ’ *03 ---------;----------------- ------------ZT/T“
1 r10'r13"e ‘ 1 —r10’r13* e

and once again from (2, 1—3) (now II 
equal to I and II in fig. 4) (r13, f13) can

and III in lig. 19 are 
be expressed by

j
^12‘^23'e 2 

1 — r21 ‘ r23 ’ e

and when (r13, t13) are substituted in (r03, t03) we obtain:

r0J ((1 r21 ' r23 ’ 6 ÍX1) e ' i ‘ ¿ ‘ ' 7'10 ' r12 ‘ ^1 (1 r21 ’ r23 ' °2 ’ &

(1 7-21-7,23-e ,X’) ----- C U1 ' r10 ' r12 (1 ---- - r21 ’ r23‘cr2 ' e 'æ2' ' ”’)

and
_ i ?> __ i Î2

^01 ’ ‘12'‘23’e 2 2

= (1 - r21 "•) - e- “■ ■ r„ ■ r12 (1 ~r„ •

or by introducing the notations

r»i = lÆ- eió“ r¡2 = I eiS". ■ ■ etc. t„ = |/7^- e‘^... etc.,

and

7?1 — [ Rio' R12’ U1 — æl —- ^10 ^12Í æl

related to the dielectric layer 1 and

^2 — [ ^21'^23 J lh — æ2-----^21------ ^23 > æ2 _

related to the dielectric layer 2.
We obtain the fundamental formulae:
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/7’03(2)-e!^ =
|/ Toi • T12 • T23 • ei(^ + + ^>)~f (ï + Î)

Ri -e1’11 — Ryeiy' + Ri R2 o2 ■ e~i(lh + !h)+iat) '
(4, 3)

The intensity distribution in transmission is given by

/(Â) =
1 — Rr - e~iyi

TçT^t3_
R2-e~iy* + R1 • R2-^2

G, 4)

When the following notations are introduced in (4, 3):

zq cos Xi
01 * 9n0 cos Ç9

T2 =
T ^2'COSZ2

12 ' Upcos^ and Ta
T n3 cos %3

23 n2 cos /2

(I\, T2, and Ta denote the energy transmitted through each of 
the systems I, II, or III considered separately).

I (2) is maximum or minimum when the denominator vice 
versa is minimum or maximum (as it is assumed that the numera
tor is almost independent of the wavelength).

The denominator is

(1 — R1e~iU1 — R2- e~iyt + RlR2a2- e~i(lJl +

X (1 — Rleiyi — R2eiyi + R1R2a2-ei(yi + y'-ai)) =

1 -4 Ri + Rf + (a2ÆjR2) 2 — 2R2 cos y2 — 2 Rt cos yx

+ 2a2R1R2cos(y1 + y2 —«2) + 2 RxR2cos (y2 —y^ 

— 2 ff2R1Rl cos (yx — a2) — 2 a2R2Rf cos (y2 — a2).

(4, 5)

We now make the assumption that yx = y2 and obtain

R[ + R2 + (cr2Ra R.,)2 — 2 ( Rx + Æ,) cos y + 2 <r2 7?1 R2 cos (2 y — a2) | 
(4, 6) 

— 2<r2Z?1Ä2(Ä1 + Ä2)cos(y —«2). J

The minimum or maximum of the denominator is determined
by the fact that the first derivative should be equal to zero, i. e.

R2) (sin y + g2 - R2R2 sin (y —a2)) —2 cq^tfasin (2 y —a2) = 0. (4, 7)
Dan. Mat. Fys. Medd. 29, no.13. 4
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So far no approximations have been made, bul now we 
introduce the approximation a2 = 0 (from Tables 6—13 it is to 
be expected that this will be a good approximation when the 
absorption is low and the reflectivity high of the central System 11).

In the case of o2 = b (4, 7) simply reduces to 

sin y ((/?! + R,) (1 + ff2- R1 i?2) — 4 a2 ■ Rl R2 • cos y) = 0.

Max. or
when

min. occur when sin y = 0 i.e. y = 360° «(zn— 1) and 

(*1
cos y = ----

1 + (T2''R1 ' ^2)
4 cr2 • R t • R (4, «)

This means: If the quantity (4, 8) is greater than or equal to 
unity, / (7) will only have a single maximum (for a specific 
order zn) at y = 360°-(zn— 1); ni ~ 1,2,3

If, however, the quantity (4, 8) is less than unity, two neigh
bouring maxima of I (Â) will occur at y = ± z; + 360° • (zn—-1); 
m = 1, 2, 3  determined by (4, 8) and now a relative 
minimum at y = 360°-(zn— 1).

If 7?10 = 7?23 and Rl2 = 7?21 (especially I and III identical), 
we simply have R} = R2 = R, and the condition of obtaining a 
single peak (for a specific order) is in this symmetrical case:

If R = I 7?1O-7?12 and the approximation (3, 21) cr2

are introduced into (4, 8), we arrive at

(4, 10)

Dufour has in 1949 [18] developed an approximate theory 
for interference filters with three silver layers. He requires that 
7?20 = 7?23 at y = 360°-(zn— 1) and from this condition a relation 
between 7?12 and 7?10 (similar to (4, 10)) is obtained. 7?2O = R22 
will give the highest value of 7max for a definite value of 7?20- 7?23
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(see page 23). However, in the case of three reflecting layers as 
opposed to a Fabry-Perot filter, the contrast factor is not solely 
dependent on R20- F23, so the introduction of the condition 
/?2o — ^23 seems unnatural. Bid when A = 0, Dufour’s equation 
is identical with (4, 10), and when the absorption coefficient A 
is small, Dufour’s equation only deviates slightly from (4, 10).

When only one peak is present ((4, 9) is satisfied) /max and 
F — ^m;ix are determined approximately (a2 — 0) directly by

Anin

(4, 4) on introducing y = 360°• (in— 1) and y — 180°- (2m—1),
respectively:

Anax
ri • • 7’

( 1 — F, — /?, + cr2 • • R^)2 (4, H)

and
Anax

Anin

1 RL + ^2 0^2 1 ’ ^2\2
1 Ri R2 F °2, ’ ' -^A (4, 12)

However, when using silver layers this contrast factor will only 
be correct for higher order filters. For m = 1 or 2, R and T will 
vary considerably from xmax to Âmin, the true contrast factor on 
the red side of the peak will be greater than F calculated from 
(4, 12), and the true contrast factor on the violet side of the peak 
will be smaller than (4, 12).

Calculation of W2 and W10.
In the case of «2 = 0 and y1 — y2 — y (4, 4) can conveniently 

be written as follows: 

/(Â) =
A + B sin2 l + C-sin4^

with
A = (1 — R,-R2 + u2FrF2)2

(4, 13)

(4, 13 a)

B = 4 ((Ä, + R2) (1 + a2 R^R^-4 u2 R. R2) (4, 13 b)

(14, 13 c)
4*

and
C — 16 cr2 R¡ • R2.
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When only one peak is present B > 0 and if two peaks 
exist, we have B < 0, and the wavelengths of the two peaks are 
determined by (4, 8) or by

In the case of one peak the W, defined by

are determined by means of

and by

(k — 1)?1 = Bsin2 — + C sin4 —
2 2

k /'•iso’ Z 360 ’ =

when y

Sill

and approximately

and for k 9

(4, 14)W2

case of 
between 
solved ;

n
2

“limit” 
easilv be

= 360 • (m— 1) ± yk corresponds to Âni In the

B = 0 (the line shape corresponds to the 
one and two peaks) these equations can 

we obtain :

IV,

and we further gel the relation

V io — j/3 • V 2 • (4, 15)

Table 17 contains the results of calculations made in the 
special ease of 3 silver layers placed in a dielectric with n — 1.36
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Table 17.

Z
V — ix 

t"

^lî(=/?'/) 
t12(=t") î\o(=r')

C 
t" 

in Å
/max

F =
/max
/min

w2
(2- order) 

in Â

w10
(2-order) 

in Å

4000
0.18—z 1.95

600

0.7708
0.0725
1.0865

0.6684
0.1796

449
600 0.152 580 260 450

4000
0.18—z 1.95

500

0.7155
0.1297
1.1706

0.5342
0.3217

334
500 0.297 162 357 618

4500
0.14—z 2.42

500

0.8150
0.0868
1.1031

0.5914
0.3095

297
500 0.406 420 317 549

5000
0.14—z 2.89

500

0.8649
0.0573
1.0644

0.6575
0.2577

286
500 0.404 1000 282 489

5500
0.15—z 3.36

500

0.8951
0.0389
1.0422

0.7126
0.2105

280
500 0.379 2300 252 436

6000
0.15—z 3.82

500

0.9188
0.0278
1.0296

0.7508
0.1830

269
500 0.386 4800 231 400

6560
0.13—z 4.27

500

0.9398
0.0218
1.0228

0.7702
0.1789

249
500 0.463 7700 222 385

6560
0.13—z 4.27

400

0.9084
0.0498
1.0542

0.6583
0.2872

194
400 0.585 1400 339 587

7100
0.14—z 4.68

450

0.9363
0.0271
1.0286

0.7416
0.2077

217
450 0.516 5000 268 464

7680
0.15—z 5.11

450

0.9438
0.0227
1.0237

0.7615
0.1900

212
450 0.507 7300 265 458
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Rv — R2 = R and y1 = y2 (i. e. a syrn metrical filter as shown 
in figs. 22 and 24). The calculations are carried out by means 
of Tables 6—13. When the thickness of the central silver layer t" 
has been chosen, R can be calculated from (4, 9)

(/? = 1 — 1/1 — 1 ; R = [//?'• /?")
I ^2 /

so that only one peak results. Next, /?', T' and from these 

quantities 7max and F = —— are calculated by means of (4, 11
Anin

—12), and finally W2 and W10 are calculated from (4, 14—15).
In practice, however, «2 is not zero, but has some small value 

('fables 6—13). To get an idea of the true intensity distribution 
I (A) in the neighbourhood of numerical calculations have 
been carried out for different values of /' and t" for the silver 
layers, directly from (4, 4) written in the form

with

and

7(Â) =
2

01
02 . £i)— iy

Qt

2
T; • r2

(øi’Øa)2 (4, 16)

Ql-eiE> = 1—Re ilJ (4,16a)

q2-eiE* = 1 — a2R-e~i{y a*} (4,16 b)

(?3-eie’ — 1—'*-!/)  (4,16 c)
0i

The calculations have been carried out by means of Rybner’s 
tables [4], In fig. 20 a first order filter M' L2M" L2M' of this type 
is considered. The thickness of the inner silver layer is f" = 400 Å 
(cr2 = 1.0542 and «2 = — O.°466) for all the curves. The thicknesses 
of the two outer silver layers /' are A: 150 Å, B: 200 Ä (just 
exceeding the value of R' at which only one peak occurs (see 
'fable 17)) and C: 400 Å (the three silver layers have the same 
thickness and two peaks appear which have somewhat different 
but low intensities).
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The thickness of A/' is, A: 150 Å, B: 200 A and G: 400 Å. The thickness of Lt 
is chosen such that for M ' is Âmax = 6560 Â.

From fig. 20 (and from further calculations not given here) 
it follows that the value of R' at which /max has its highest value 
when R" is constant, is very near the value of R' determined by

(4-9)
R \ I cr2/

In fig. 21 again a filter of the type M' L2M" L2M’ is considered 
(solid line) but here the thickness of the central silver layer is 
I" = 500 Å (tj2 = 1.0228 «2 — —0.230°) and the outer silver 
layers has a thickness of t' = 250 Å. (This corresponds very 
closely to a value of R' which satisfies (4, 9)). For comparison 
an I (A) curve for a Fabry-Perot filter MLtM (fig. 11, A) has 
been added (fig. 21 broken line) the thickness t = 300 Å for the 
M-layers has been chosen in such a way that Imax is about the 
same for the two filters. The advantages of the compound filter
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Fig. 21.
Solid line: 7 (Â) for a filter M'L2M" L2M' with t" = 500 Å and t' = 250 Å. 
Broken line : I (A) for a filter M L2M with t = 300 Å. The thickness of the L2 

layers are determined as for fig. 20.

M'L2M"L2M'

Ag Ag Ag

J = 0,49

6475Â

n = 1.36
Fig. 22.

The filter the intensity curve of which is the solid line in fig. 21. 



Nr. 13 57

M' L2M" L2M' is apparent from tig. 21. VV2 (for the filter M' L2M" L^M'} 
is (read off from fig. 21) 410 Å and 1V1O = 760 Å in good agree
ment with the values given in Table 17.

Both in fig. 20 and in fig. 21 it is assumed that v— ix = 0.13 
— i 4.27 (in the wavelength region considered) and the thickness 

d of the dielectric layers has been determined in such a way 
that a filter M'L2M" would have had peak transmission at z 
= 6560 Å. The wavelength scale has been determined according 
to (3, 27 a) by

„ 6560

A comparison between fig. 20 and fig. 21 shows that the thickness 
t" of the central silver layer M" has to be chosen rather great 
to obtain a VV2 value of about the same size as for a Fabry-Perot 
filter with the same Imax.

In fig. 23 / (Â) is shown for two filters M' L±M" L^M' green 
2nd order t" = 500 Å (u2 = 1.0422; a2 = — 0.575°) in the 
case of both the filters. For the solid line curve t' = 280 Â 
(determined such that R' satisfies (4, 9)) and for the broken 
curve I' — 330 Å ((4, 8) is less than unity, i. e. two peaks and

1 (A) for two filters of the type M' Lt M" Lt M • t" = 500 Å for both filters. Solid 
line : f = 280 Å. Broken line : t' = 330 Å. d is determined such that Amax = 5500 Å 

for the filter
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n=u6
The filter I (A) of which is

m'l4ml4m

Fig. 24.
the solid line curve of fig. 23.

a lower /max result), v — zx = 0.15 — z- 3.36 and the wavelength 
scale has been calculated front (3, 27 a)

, 5500X -- ----

with y = y—-360. '1'he thickness d of the dielectric layers L2 is 
determined in accordance with (3, 8) so that a filter of the con
struction M'LiM" would have had Xmax equal to 5500 Â.

In fig. 25 the solid line curve is the same as the solid line 
curve in fig. 23 (i. e. / (X) for the filler fig. 24). The broken line 
curve is the intensity

0.379

1 + 2127.2 sin4

calculated from (4, 13) with the approximation a2 = 0. The 
actual small value of «2 — — 0.575° gives rise to an asym
metric line shape and a shift in Xmax towards violet. Another 
difference is that the exact calculation (with «2 = — 0.575°) 
predicts an Zmax about 10 percent, larger than obtained by the 
approximative theory with a2 = 0. (The same is apparent from 
fig. 20 and fig. 21 as compared with 'fable 17).
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Unbroken line: 7(2) for the filter in fig. 24. a2 = — 0.575°. 
Broken line: 7(2) calculated from (4,13) with «2 = 0.

The deviations between the two curves in fig. 25 are the 
greatest in the very neighbourhood of the peak, but W2 and 
particularly IU10 will be very nearly equal for the two curves.

If the three silver layers have the same thickness, two widely 
separated peaks result (fig. 20 curve C). If the thickness of the 
central silver layer is now decreased, the separation between the 
two peaks will increase and because of the increase in a2 (caused 
by the decrease in the thickness of an absorbent layer) the 
asymmetry will be more and more pronounced. (Fig. 27 solid 
line corresponding to the filter in fig. 28 a). If, however, a thin 
ZnS layer (nx = 2.36) is used as the central reflecting layer, we 
have «2 = 0, and in this case I (Â) can be calculated exactly 
from (4, 13), and Zmax is determined by (4, 8).

Fig. 2G.
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R and T for the ZnS layer (fig. 26) are determined by (3, 23—24)

From these equations follows R + T — 1 (conservation of energy) 
and

and

O. 17)

a2. <;<». = 1-1. ?«#-*<»  = i 0----£o¡> i.e. a2 = 1 and «2 = 0
R i 2 • 2 æ R4 '01 sm2 -

in accordance with (3, 20).
From these formulae it is easy to calculate the intensity distri
bution I (Â) for a definite value of the thickness d of the ZnS layer.

In fig. 27 solid line / (y) has been calculated for t' — 150 A

Solid line: I (A) for the filter' M" L2 M' L2 M" constructed as shown in fig. 28 a. 
Broken line curve: I (A) for the filter M"L2Hi LtM" constructed as shown in 

fig. 28 b. 2
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400 150 400
Fig. 28 a. Fig. 28 b.

Fig. 28 a. The filter, I (2) of which is indicated in fig. 27 solid line.
Fig. 28 b. The filter I (2) of which is indicated in fig. 27 broken line. The low in
dex layers L2 of the filters are determined in such a way that the filters 

M" L2M', and M"L2Hi both have peak transmission at 2 = 6560 Å.

(thickness of the central silver layer) and t" = 400 Å (thickness 
of the outer silver layers) by means of (4, 16).

In fig. 27 broken line

i (y) -
0.002122

1.4057 — 9.0178 sin2 + 14.5352 sin4^

has been calculated corresponding to x = 90° I—layer at z = 
\ \8

6560 Å for the ZnS layer. The thickness of both the silver layers

is 400 Å and x and v — ix = 0.13 — i. 4. 27 has been regarded 
as independent of the wavelength. This is only a rough approxi
mation in the case of p — 1 as on figs. 28 a—b, but will be a good 
approximation in the neighbourhood of 6560 Å for a filter of 
higher order (p — 8—10). Fig. 29 shows the approximate distri-

-66 66 292 426 652 766 1012 1146
M’L H L M" --------- 1-------------- 1------------------------ 1---------------1---------------------1-------------- 1------------------------ 1------------- 1---------- yV I J/>

0 160 360 540 720 900 1060
m l m ___ 1____________1____________ 1__________—'____________ i____________ 1____________ y

Fig. 29.
The positions of the peaks on the y scale for a higher order filter M" L2PHi LipM" 
as compared with the position of the peaks for a Fabry-Perot filter M"LipM”.
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bution on the ¿/-scale of the peaks for such a filler M" L2pH L.lpM" 
as compared with the distribution of the peaks for a Fabry- 
Perot filter A/"L4pJ/" (which is very nearly equally spaced). 
/max *s the same for both filters in accordance with (2, 18 b).

The Filter M'L4M"L4M' Used as Phase Plate.
Fig. 30 shows the phase change at transmission for a filter 

.1/' L4J/"L4 J/' (like that in fig. 24). The calculation is quite 
analogous to that on page 39 for a Fabry-Perot filter. The 
phase plate is shown at the bottom of fig. 30. The phase difference 
between P2 (light passing through the phase plate) and P4 (light 
passing outside the phase plate) is according to (4, 3) 

(4, 18)

making the approximations

ßoi — /^23 and ß0l ß23 + ßi2 — ßo k - Å.

£3(X) (the phase change from multiple reflections in the layers) 
is calculated from (4,16 c). The phase change is zero in the 
neighbourhood of the peak and a change from negative (-f- 90°) 
to positive (— 90°) contrast of the image is possible by means 
of a small alteration of the wavelength.

The Intensity R (/.) in Reflection.
fhe intensity distribution R (Â) in the reflected light from a 

filter of this type can without any approximation be calculated 
from (4, 2). A general analysis of the properties of the filter 
M'L.,pM' ’ L2pM’ in reflection has not been carried out here (as 
it would only be a rough approximation to place a4 — 0), but 
/?03(X) has been calculated directly from (4, 2) in three special 
cases of the filters the transmission curves of which arc shown
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Solid line: Phase change at transmission through an interference filter of the type 
AT L4 Al" Z,4 AT. (Phase difference between P2 and P4).

Broken line: I (2) for the same filter. (The same as the solid line curve in figs. 24 
and 25). The phase plate is shown below in the left corner of fig. 30).
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in fig. 20 Curve B, fig. 21 (unbroken line) and fig. 23 (unbroken 
line). (4, 2) can be written

^03 (^)

^•ei£1= l—Re~iy, Q2-ei£t = 1 — a2 R■ e~i(-y~tt,)

and

have been calculated above (4, 16 a—c), and if further

o4-e,e‘= 1
2i

is calculated, we simply get

Intensity distribution in reflection from the filters of the type M' L2M" L2M'. 
Unbroken line: Reflection from the filter in fig. 22 and with transmission curve 
in fig. 21 (unbroken line) ai = — 1.386° and a2 = — 0.230°. Broken line: Reflection 
from the filter the transmission curve of which is given in fig. 20. Curve B. 

«! = — 2.084° and a2 = — 0.466°.
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Fig. 32.
Unbroken line: Intensity distribution in reflection from the filter in fig. 24. 
a-! = —2.401° and a2 — —0.575°. Broken line: Intensity distribution at trans

mission through the same filter.

The three curves of R (Â) (fig. 31—32) have much the same trends 
and are characterized by having two minima and, as in the case 
of fig. 13, the minima do not reach zero.

Recently Geffcken [19] has also considered filters of this type 
with three silver layers.

§ 5. Interference Filters with Four Systems of Reflective 
Layers, (e. g. four silver layers).

The same assumption is adopted here, as in the previous 
sections, viz. that each of the systems I, II, III, and IV, when 
considered separately, do not act as interference filters themselves.

The treatment in this section is quite analogous to that of 
§ 4. The following notations are used here as previously:

Dan.Mat. Fys. Medd. 29, no.13. 5
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Fig. 33.

and from this follows

.rf/ =
2 cos z„ Ä Ä

t/17 ‘lq uq,q—1 uq,q + i

1 x. etc.
rq—l,q ' rq,q—l

and
^q,q—l = and Rq = ]/R(¡tq_1-Rqq+1

e-'X/ = R . g-i.'/Q, (</ = 1. 2, 3).

As in §4 II + 111 + IV are considered as a single system (and 
identical with II in fig. 4) and (2, 1—3) is employed (Index 2 
being changed to Index 4):
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and in these formulae the following substitutions are made, 
derived from (4, 2—3):

and we arrive at

r14

r12 ((1 X • e~iy°) -o2R2- e~iy* + ia'-(l -u3 R3 • e~ i,h+ ' “’))
(1 i?2 • e~'!/a(l — cr3/?3-e—iy,+

and
/X, x,\

^14 = ^12 ’ ^23’Gl'e \2 2 /

(1 R2-e~iyt(l -<r3R3-e~i,,3 + iat)

4

|Æ • e1’001 (( 1 ~ ya) ( 1 - Ä! • e-f ~ K1))

m2■ 1?1 •
(1- ^.e-^Xl-^.e-'^)

- J?2 • e-iy’ ( 1 - <73 Z?3 • e- f - “’>) ( 1 - <72 Z?x • e~ '■ 
and

(5, 1)

We now consider the properties in transmission in the case where 
the filler is constructed symmetrically, i. c. when Ry = Z?3 = R

Ui = U3> o-2 = u3 and nx = n3.

In this case we obtain

(5, 3)

nrcos/i
1 01 ■

n0 ■ cos (p
^2 — ^3 — -^12 — Xs and T _ 7’ «4-COS%4

1 4 — 1 34 " ~
n1cosZi

are the energies transmitted through Systems I, II, III, and IV, 
when each of the systems arc considered separately.

5*
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The denominator P in (5, 3) can be expressed by

P = 1+/?4 + 4/?2 + 7?j + 4(<t2/?/?2)2 + /?|-(<t2/?)4+4Z?-Z?2-cos(y1 —y2)

+ 4 cr2-1?3- Z?2- cos (yx—y2 + a2) —4/?(Z?2 + 1) cos yx

— 4 q2R- Ri ((aR)2 + 1) • cos(y1— a2) — 2 7?,- cos y2

— 2 R2 al- Rl- cos (y2 — 2 «2) —8 <j2 R2R~ cos (y2 — cc2) (.’

— 2 R2 • R2 cos (2 yx — y2) + 2 ■ R-cos 2 yx + 2 (Z?2ct2/?)2 cos (2 yx — 2 a2)

+ 4 cr2R2 R- cos (yx + y2 — a2) + 4 R2 • R (cr2 J?)2 ■ cos (yx + y2 — 2 a2)

— 2 J?2-(<r2/?)2 cos (2yx + y2 —2a2).

We now make the approximation a2 — 0 and consider the case 
yx — i/2 (= ?/s) — y in detail. It is easy to show from (5, 4) that

P in this case can be expressed by a polynomial in sin2-:

P = A + B sin2 + C sin4 + D sin6 (5, 5)
2 2 2

A = ((1 — 7?)2 — R2 (1 — ct27?)2)2 (5, 6)

C — 16/? ( 2 Z?2 (cr2l?)2 — R ( 6 cr| R, — (cr2 Z?2)2— 1 ) + 2 cr27?2) (5, 7)

D = 64 R2 (ct2 7?)2

and

(5, 8)

B = M—A—C—D with M = ((1 + R )2 + R2 ( 1 +or.,2?)2)2. (5,9)

The coefficient A is determined directly from (5, 3) when y = 
360°• (ni — 1), and M=ApB^C^D is determined when 
yr — y2 — 180°-(2/n—1) is substituted in the denominator and 
simultaneously we get

Zmax = ^2) (when — T\ as is often the case) (5, 10)

and
-‘max

-‘min

M
A

(5, 11)
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The values of y at which maximum or minimum of I (z)

occur are determined

i. e. 2
B + 2Csin2^+ 3D sin4 = 0.

Only one peak is present (for a given order in) at y = 360° • (m — 1 ) 
if there is no value of y which satisfies the equation

D ■ sin4 + 22
C- sin2 y

9
B C ]/C2 — 3 BD

3D Id
12)

A further investigation shows that the coefficients B and D are 
always positive numbers, from which it follows that if C>(), 
only a single peak results; if, however, C< 0; C2 — 3 B- D> 0, 
and three peaks result (for a given order m).

We now introduce R = H corresponding to C — 0, i. e. 
determined by

(5, 13)

and the final result is then the following:

if R < H, only one peak is present at y — 360°• (ni — 1); 

if R> H, three peaks result, the one at y — 360°-(ni— 1) 

and the others at y = ± n + 360°-(m — 1) determined by 

and the two minima between the 3 peaks at 
360°-(n?— 1) are determined by

C \C-,]BD
3 D 3 D

(5, 14)

y = ± n +

(5, 15)
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The A''th intensity band width IF/. is determined in the usual 
way (from (5, 5)) by means of the equations

Calculation of VV2, W10 and Wlooo.

(Á — 1) A = B- sin2?Å:+ Csin4 —+ D sin6*̂;
9 9 9

= y— 360 (m— 1) and H\. 7k-
180"/‘

(5, 16)

In the case ol R = H we have C = 0, and B has a small positive 
value, and H'1O and still better 1V1OOO can be determined approxi-
mately by

sin = jfclM (5>16a)
2 1 D

and

(f m for filters with silver layers).
Table 18 contains the results of calculations made in the 

special case of a symmetrical filter with four silver layers placed 
in a dielectric with n = 1.36. The calculations are carried out

Wk. = — • — (k = 10 and 1000 respectively). 180 /' F

I n the case of W2, B sin2 — has to be taken into account2 9

by means of Tables 6—13 and are analogous to the calculations 
of Table 17. When the thickness t" of the central silver layers 
has been chosen, R = ÿR'R" = H is calculated from (5, 13) 
so that only one peak results. Next /?', t' 7\ and /max, F, 1V2, 
1V1O and H7loOo (2nd order) are calculated. For comparison /max

F  max. anj for ßß.ers qlc Fabry-Perot type ML^M 
Anin

and for filters of the type M'L^M"L^M' (Table 17) have been 
added. In Table 18, / for the Fabrv-Perot filters has been chosen 
in such a way that /max is about the same as for filters of the type 
M’ L^M" treated in this section. The contrast factor 
Fis about 10 times higher for this type of compound interference 
filters than for the type treated in § 4, and F for the latter type 
is again 10 times higher than the contrast factor F of a Fabry-
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Perot filter with the same value of 7max, and IU10 is less for the 
two compound types than for the Fabry-Perot type. Furthermore 
these two types of interference filters make it possible (by varia
tion of t' and /") to vary the band width and at the same time 
to keep F constant. In many applications a broad band width, 
combined with a small intensity outside the band, is desirable.

In the formulae (5,5—16) from which Table 18 has been 
calculated, the approximation «2 = 0 is done. Actually «2 is not 
zero, but has a small negative value. However, this small value 
of «2 is large enough to change the line shape considerably in 
the very neighbourhood of the peak (as was the case in § 4) 
but the “wings” of the line are almost unaltered, and VVr2 and 
furthermore IFX0 and Wxooo calculated from (5, 16) will be nearly 
the same as obtained by an exact numerical calculation.

The exact numerical calculations carried out for this type of 
compound interference filter are quite analogous to those carried 
out in § 4. The equation (5, 3) can be written in the following way:

With

and
Q1. ei£i = 1 R

q2. eiEi = 1 — a2 R2 e~iy' + ic<2

(5, 17 a)

(5, 17 b)

to be calculated in the first step, and the next step is to calculate

o3-ei£a = \ — R2-iQ^\2 ■ e-i(lj2-2£2 + 2£'}, (5,17 c)

and finally 
/T, • T-¿\2= R P (5, 17 d)
\ Pl ’ØS /

In the calculations y2 is only exactly equal to yx at z = Xm, but 
chosen according to

y2 — 360 (m — 1 ) = (yx — 360 (m — 1 )) • Ä » (5,18)
360 m — 2 o91

and the wavelength scale is determined by (3, 27 a) as previously.
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400 Ä 
thick

nesses of the L2 layers are chosen such that Âmax for M'L2M" and for M"L2M" 
is 6560 Å.

In fig. 34 (analogous to fig. 20) the thickness of the two central 
silver layers is f" = 400 Å in all the graphs (u2 = 1.0542; 
w2 = —0°.466). The thickness t' of the two outer silver layers is 
as follows:

A: t' = 150 almost corresponding to R = H determined by 
(5, 13) (only one peak present).

B: t' = 200 Å now R> H (and C< 0). Two neighbouring 
peaks, result (the third peak which according to the approximate 
theory should have a position symmetrical to the second peak, 
has nearly disappeared in fig. 34).

C: t' = 400 Å. The four silver layers are all of equal thickness. 
Three peaks result. The positions of the peaks (along the abscissa) 
correspond closely to the values calculated from (5, 14); the line 
shapes for the two outer peaks are, however, very different from 
those calculated approximately from (5, 5—9). Il is evident from
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I (Â) for two filters of the type -I" = 500 Â for both filters.
Unbroken line: f = 200 Å. Broken line: T = 250 Â d1 anil d2 are determined 

such that Âmax for the filters M' LZM" and M" L2M" is 6560 Å.

M'L2M'L2M'

n = 1.36

J = 0.45 
max

= 6450/
max r

Fig. 36.
(All measures in Ä).

The relative measure for the thin layers in the compound filter, I (A) of which is 
shown in fig. 35 (unbroken line). 
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lig. 34 and from other numerical calculations not given here, 
that /max reaches its highest value if R very closely corresponds 
to R = H determined by (5, 13) (R2 regarded as constant). At 
R> H (curve B) and for R < H /max decreases, and at R = 0 
we have M" L2iM" (i. c. the Fabry-Perot filter fig. 11 Curve C) 
with /max = 0.30. (The same data are used as in fig. 20).

In fig. 35 again a filter of the type M’ L2M' ' L2M' ' L2M' is 
considered, but here the thickness of the two central silver layers 
is 500 Å for both curves. The unbroken curve is I (Â) when the 
thickness of the two outer silver layers is t' = 200 Å, this cor
responds closely to R — H determined by (5, 13); i. e. only one 
peak results. The broken curve is 1 (Â) when t' — 250 A; R > H 
and an unsymmetrical line shape with two peaks results. Also 
here /max reaches its highest value near R — H; i. e. for R > H 
and R < H /max will decrease. For R = 0 the filter is reduced 
to the Fabry-Perot filter M" L2M" (fig. 11 Curve D) with /max 
= 0.12. Both in fig. 34 and fig. 35 v—ix = 0.13—i. 4.27 is 
regarded as constant and the wavelength scale is given by

.  6560

1+360

In fig. 37 / (Â) (unbroken line) corresponding to a compound 
filter of the second order M'L^M"L^M"L4M' is shown. We get

Fig. 37.
Unbroken line: I (Å) for the filter M'LtM" LiM" LtM' the data of which are 
shown in fig. 38. Broken line: I (Z) for a filter MLiM with t = 360 Ä. (The filter 

is shown in fig. 10).
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ML ML MIM'

4 4 4

n= 1J6

J = 0.37max

Fig. 38.
The filter I (A) of which is shown in fig. 37 (unbroken line). The relative dimensions 

are true to scale.

front fig. 37 1\2 = 225 Å and VF10 = 370 Å in good agreement 
with the values calculated from the approximate theory with 
tt2 = 0. (Table 18). Also here Zmax = 0.37 is much higher 
than /max of the Fabry-Perot filter M"L^M", which is equal to 
0.14. f' has been chosen in such a manner that R = H (deter
mined by (5, 13)), and the thicknesses of the dielectric layers 
have been chosen in such a way that the Fabry-Perot filters 
Mr L^M" and M" L^M" both have a peak at 5500 Å. For com
parison I (A) (broken line) for a Fabry-Perot filter ML^M with 
the same Imax as for the compound filter, has been added. (The 
Fabrv-Perot filter is the same as that shown in fig. 10). It should 
be noticed that IV10 for the compound filter is considerably less 
than W10 for the Fabry-Perot filter and that VV1() — 1.5 • 1V2 f°r 
the compound filter.

In fig. 39 again I (Â) corresponding to the filter in fig. 38 is 
shown (unbroken line) a2 — —0.575°. The broken line is

0.337
I (Â) = --------------------y~y--------------------

1 + 18.54 sin2 \^\ + 77062 • sin6

calculated from (5, 5—9) with «2 = 0. Just as in fig. 25 the 
deviation between the two curves is rather great in the neigh-
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Fig. 39.
Unbroken line: I (A) for the filter in fig. 38 a2 = —0.575°. 
Broken line: I (Z) calculated from (5, 5—9) with a2 = 0.

bourhood of the peak. However, the deviations in W2 and in 
W10 are small. As in case of fig. 34—35 the small negative value 
of «2 gives rise to a shift in Âmax towards violet (in comparison 
with Amax for the filters M'L4M" and M" L^M") and to an 
unsymmetrical line shape. Finally it should be noted that 7max 
is raised by about 10 per cent, similarly to the filters of the 
type in §4.

The thin silver layers at the outside of a filter (such as that 
in fig. 38) will more easily deteriorate through chemical action 
than the central thicker silver layers. However, the two outer 
silver layers can be replaced by dielectric layers as shown in 
fig. 40. The line shape will be almost the same as that shown 
in fig. 37 (unbroken line), but /max will be raised from 0.37 to 
0.58 as no absorption takes place in the dielectric layers. (H in 

A
fig. 40 means a —layer of ZnS with n = 2.36). 

4
When the four silver layers are of the same thickness, three 

peaks result, with intensities lower than Zmax for the filter M" L2M" 
(fig. 34, C). If the thicknesses of the inner silver layers are smaller 
than that of the outer layers, the separation of the three peaks 
increases and as a2 increases the difference in intensities of the 
three peaks will continue to increase. In fig. 41 (unbroken line) 
I (A) is indicated, calculated for a filter shown in fig. 42 a. The
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HL H L2M\M\H L H

\58.

A = 5440Zz 'max

J = 0 max

Hig. 40.
Filter of the compound type treated in this section with each of the external silver 

layers replaced by three dielectric layers.
L =--laver with = 1.36

4
H — —layer with n¡¡ = 2.36

4

thickness of the outer silver layers is equal to 400 Â and of the 
central silver layers equal to 150 A. v — ix = 0.13—i. 4.27 has 
been regarded as constant, and for this reason the calculation is 
only approximate for a filter of the 1st order.

If the central silver layers are replaced by two thin ZnS layers.

Continuous curve: I (Z) for the filter M" L2M'L2M'L2M" constructed as shown 
in fig. 42 a. Broken line curve: 7(2) for the filter M"L2HiL2H^L2M" constructed 

as shown in fig. 42 b.
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M"L2M' L2M' L2M"

400 i*>o iSo 4vôo
Fig. 42 a. Fig. 42 b.

Fig. 42 a. The filter the / (A) of which is shown in fig. 41 (unbroken line). 
Fig. 42 b. The filter I (2) of which is shown in fig. 41 (broken line).

The low index layers L2 of the filters are determined in such a manner that the 
filters M"L2M', M'L2M', M"L2Hi, and f/i/J2/fi all have peak transmission 

at 2 = 6560*Å. *

then a2 = 0 and in this case I (2) can be calculated by means 
of (5, 5—9). I (2) has been calculated (analogously to page 60) 

2 corresponding to a thickness of the ZnS layers equal to -----  at
8 +/

2 — 6560 Å, i. e. ,r = 90° (fig. 42 b). If v — in = 0.13—i. 4.27 
and x are regarded as independent of the wavelength, we obtain 
(from (4, 17) and (5, 5—9))

0.001817
Z (2) = ------------------------------------------------------------------------------

0.006146 + 15.979 sin260.959 sin4^ + 58.140 • sin6

I (y) is shown in fig. 41 (broken line curve).
Fig. 43 shows the positions of the peaks for a higher order 

filter M" L2pH^L2pH^L2l)M" as compared with the positions

M LM
0 120 240 360 2-360 3 360
I I I I I I I I I I L

y

y
Fig. 43.

The position of the peaks on the y scale for a higher order filter 
M"L6PHxL‘>pHi LïpM" as compared with the position of the peaks for a Fabry- 

Perot filter M"LapM".
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of the peaks for a Fabry-Perot filter M"L(.pM". (The values of 
Zmax arc same for the two filters).

The Filter Used as Phase Plate.
In fig. 44 the phase change at transmission is shown for a 

filter M'LiM"L¿M"L^M' (like that in fig. 38). The phase dif
ference between P2 (light passing through the phase plate) and

(light passing outside the phase plate) is, according to (5, 2), 

Í(A) = Í2ft + 2ft-?^-/i(2di + d2)-^a)l
Z ' ? (5, 18)

+ 3Ê°(2/'+2/"+2d1 + d2).
Z

ßY is the phase change at transmission for the outer silver 
layers and ß2 the phase change for the central silver layers.

g?x is the thickness of the two outer dielectric layers and d2 
for the central dielectric layer and the approximations ß0l = 
ß3i = ß2 and 2 + 2 ß2 = ß0 — k- Z are made.

£3(â) (the phase change from multiple reflections in the layers) 
is calculated from (5, 17 c).

Calculation of R (2) .
The intensity distribution R (z) in reflection from a filter of 

this compound type can be calculated directly from (5, 1); this 
equation can (in the case of symmetry) be written as follows :

^04 (^)

^01 Qi 1 -æ2-?3 Q5 . + i(e5—£«)—

Qi

2

(Qi ?b)2

where • e'£1 = 1 — R e ,yi; Q2' e'e* ~ 1 — cr2 • 7? • e 1 (yi
R = I P'-7?2) and ø3-ei£> = 1 — 1?2-i^2) • e2i(£*_£,)_i!/2 have

\{fi/

previously been calculated. If further ¿>4-el£1 = I—a}R ■
and o5- c'£s — 1 — R' are calculated by means
of Rybner’s tables [4], we finally obtain

fí(A) = R'-(Qi'[ (p6 denote the bracket in the numerator).
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Fig. 44.
Unbroken line: Phase change at transmission through a filter of the type M' L^M" 
LiM"LiM'. (Phase difference between P2 and Pj). Broken line: I (Z) for the 

same filter. The phase plate is shown below in the left corner of fig. 44.

This calculation has been done in case of three filters. (The
I (%)'s for these filters are shown in fig. 34 Curve A, fig. 35 un
broken line and fig. 37 unbroken line corresponding to R (2) in

Dan.Mat.Fys.Medd. 29, no. 13. 6
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is shown in fig. 35. (Unbroken line). a1 = —2°.084; a2 = —0°.230. Broken line: 
7i(Â) of a filter of the same type but with thinner silver layers. The corresponding

I (7.) curve is given in fig. 34 (Curve A) = —2°.971; a2 = —0°.4G6.

Unbroken line: R (A) for the compound filter constructed as shown in fig. 38. 
Broken line: I (Á) for the same filter. = -—3°.386; «2 = —0°.575.
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lig. 45 broken and unbroken line, and to fig. 46 unbroken line, 
respectively).

A general mathematical analysis has not been carried out and 
would be rather complicated because the value of «x here is 
essential for the shape of the R (2) curve.

fhe three curves of R (2) (fig. 45—46) have much the same 
trend (two minima). It should be noticed that the broad minimum 
towards longer wavelength is near zero intensity especially in the 
case of fig. 45.

In the previous section only the case y2 = yx has been con
sidered in detail. If y2 = m- y1 (m = 2, 3, 4 ), the con
dition which expresses that only one peak must occur (at a 
definite order) is more complicated. However, the condition which 
expresses that Imax should have its highest value for a definite 
value of R2 is the same as in the case of y2 = ylt and in reality 
the only difference in the the case of y2 = m- yxis that VVr2 becomes 
smaller than in case of y2 — yx and satellite bands occur corre
sponding to the higher orders for the filter

§ 6. Improvements of the Interference Filters ML2mM, 
ML2mM L2mM and M' L2rnM" L2pM" L2mM' by Means of

2
--layers with Alternately Low (£) and High (//) Index

of Refraction.
'Fhe simplest improvement is to replace the L2m layer with 

three dielectric layers L' H2m_2L'.
From (2, 17 a) we get at normal incidence

= n¿(l~|/Rlo-e~¿(X1-¿lo)) 

l+r2o nr/(l+[/ÍRlo-e_i(X1~álo))’ (6, 1)

The maximum value of R20 occurs when .xx = dxo, and in this 
case R2o is determined by

1-1/ R2o -

I
- , — = a, i. e. ^20 — I

1+1 4?20 «H \1 + /Rio' \ 1 + (I
6*
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o=1.36
jOOPÅ

O

/ L

2 ■ H o=2,36

3 L n = 1.36

4 H
5 L
6 H

Fig. 47.
The reflective system I or II of fig. 6.

The next improvements of the filter (or more
correctly ML'L2m_2L'M') would be ML'HL2m_AHL'M and 
ML'HLH^^LHL'M, etc.

Again by (2, 17 a) we get

1 — f 30 nH /1 + J -^20 |

1 + í'30 nL V “ I R2J

and in general
1 —1 A.o =
1 + I Rq,o ^nn 

and
á,,o = -(?-2)-180’. (6,4)

In this way the reflectivity from each of the systems I and II of 
a filter like that in fig. G can easily be calculated. The calculation 
of transmission T and of o-eia is carried out by means of the 
following general theorem:

If two filters A and B (fig. 48) only differ in such a way that
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the layer L2/>—2 replaced by the layer H2q_2 at B, where
A

L and H are exactly —layers for a wavelength (corresponding 
-1

to xA = 360°-(p—1) and xB = 360°-(ç — 1)), then I (h), R (ÂJ, 
C (Âx), etc., are identical for the two filters (follows direct from the

T T recurrence formulae (2,7—8)), and we get ——— = ---- ——(which
1 — RA 1 — RB

• i c/o 1QKW a 1 (^a'Ra'(-^Ua 1’ —aB’RB'eiaH 
is a special case of (2,18b)) and----- ———------ ~ .

1-Ra 1-Rb
From these equations RB, TB, aB and aB can easily be calcu
lated for the wavelength Aj with good accuracy when /> 350Å.

When we add more quarter wavelength layers to the silver 
layer, (fig. 47) R{)q increases according to (6, 3). This means that 
the absorption factor AOq as well as aq and a will decrease.

To calculate I (A) for filters of the type § 3 when 1 and II of 
fig. 6 consist of several layers, we must first calculate y (2) by 
means of (2, 7) and (3, 6 a), and next y is substituted in (3, 5 b).

In fig. 49 y (A) is calculated for different numbers of dielectric 
layers but with the same thickness t = 350 Å of the silver layers.

= 6560 Å nL = 1.38 (MgF¿) and nB — 2.36 (ZnS). From fig. 49 
it is obvious that besides the main peak at 6560 Å neighbouring 
peaks occur. E. g. the filter ML'HLHL H2 LHLHL'M has peaks 
at 5130 Å, 4740 Å, and 4340 Å (where y = 360°-p) (Curve C). 
For comparison a Fabry-Perot filter ML'L^L'M has been added 
(Curve D, broken line). This filter has neighbouring peaks at 
5480 Å, 4700 Å, and 4120 Å (read off from fig. 49). Not only the
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Fig. 49.
y (2) calculated for filters of different kinds A—1). n/, — 1.38, tin = 2.36 and 

t — 350 A for the M layers.

main peak at 6560 A, but also the neighbouring peaks will accord
ing to (2,18 b) have the same /max = Í— — j for the two filters

C and 1). In Table 19 some characteristic properties of the filters 
A—I) have been added.

Table 19.

<1 K()q / W2 Anin Jmin A (max)

A 2 0.9243 1.61 102.1 Â 5030 Â 4.65 • 10—3 4180 Â
B 4 0.9734 2.11 26.6 5410 1.05 • 10—3 4860
C 6 0.9908 2.33 8.2 5530 0.49-10 3 5130
1) 0.8740 5.00 56.3 5970 2.91 • 10—3 5480

6560 Å and /max = 0.398 in all the filters A—I) (fig. 49)

/(/yl _ Âj

\dz/2 = 2i 360
and /min
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Fig. 50.

Filters of this silver multiple dielectric layer type have been 
described and produced by Turner [20] and Dufour [21],

Calculation of / (2) for such a filter al oblique incidence can 
be carried out in an analogous way for the s and p component 
treated separately. (First 7?Oq, from (2, 7—11) and (1, 12—13), 
next y(2) from (3, 6 a), and finally I (2) from (3, 5 b) arc to be 
calculated).

The simplest filter of this type is J/. This filter
is of interest for special purposes because the violet shift of 2X 
at oblique incidence is smaller than in the filter ML2mM. As 
mentioned above, the highest value of /?02 occurs when L' has 

a thickness of —• 1 , i. e. xq = <5102il41o. If aq is con-
180 4 nL

siderably less than this value (xq  60°), a calculation shows 
that the splitting up into two components z, and Zp is small up 
to an angle of incidence of 60°. If nH — 2.36, nL should be 
below 1.34 to get the best result. (Fig. 50).

§ 7. Multiple Dielectric Layer Interference Filters.

Each of the systems I and II (in the case of filters of § 3 or 
I—IV in the case of filters of § 4—5) consist in this case of 3—11 
quarter wavelength layers of dielectrics with alternately low (zzL) 
and high (n2/) index of refraction in this case beginning with a 
a high index layer on the filter blank.

If I and II (fig. 6) each consist of </ quarter wavelength layers 
Dq = HLHLHLH , the reflectivity Rq of the system I)q is

, ' 2
at the peak Zx (where the layers are exactly —layers) determined 
by (6, 3) to be
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nG is the index of refraction of the filter blank (glass plate 
nG — 1.518).

To calculate I (z) for filters with reflective systems of this 
type Rq, ôq must be calculated by means of (2, 7) as a func- 

2
tion of x — 180°-— (at normal incidence). Schröder [22] has 

X
from (2, 7) developed a general mathematical expression for 
1 — and made calculations for r — 0.25 and r = 0.40

(r = —------— at cp = 0). Abeles [7] has expressed J?Q(.r), 5f/(.r)
'Of +

in terms of Tchebycheff’s polynomials, and by means of an 
NBSMTP table /?9(.r) has been calculated. Further investigations 
concerning ÂQ(.r), <5Q(æ) have been made by Dufour [23], 
Dufour and Herpin [24], and Vasícek [25].

Some of these calculations have been repeated here, carried 
out direct from the recurrence formula (2,7) by means of Rybner’s 
tables [4] .All these calculations show that within a span of 2 v in x 
180 — v < x < 180 + p the difference 7?f/(.r) —7?Q(180) will be 
sufficiently small to make use of D(/ as a reflective coating for 
interference fillers within the region Â0<^<Â2. corresponds 
to X — 180°; z0 to X = 180° + v and Â2 to x = 180°— v, 
x = 5. 180° and /?„(-.t) = Ä,(.r).

This wavelength region < A < A2 is almost independent of 7 
when 7 > 5; outside this region Rq(x) decreases rapidly; according 
to Vasícek [25] the more the greater 7 is.

The value of p is a function of r only. When nL = 1.38 (MgF2) 
and nH = 2.36 (ZnS) (as in Table 20), we have r — 0.262 and 
D — 30°. When — 5500 Å, this corresponds to z0 = 4715 Å and 
Â2 = 6600 Å, and for — 6560 Å we get z0 = 5620 Å and
z2 = 7870 Å. If r = 0.4, we gel p ~ 50°, at — 6560 Å this 
corresponds to Ào = 5130 Å and Z2 = 9080 Â. (r = 0.4 corre
sponds closely to MgF¿ and S52S3 which according to Schröder 
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22] can be employed in the red-infrared region). So with this 
type of filters the wavelength region covered by the filter is more 
restricted than by filters with silver layers.

Table 20.

9 x = 180° X = 180° ± 30°

/

2 \dxjx = 180°

1 0.2056 0.1946 1.40
2 0.4089 0.3671 1.74
3 0.5962 0.5162 2.00
4 0.7399 0.6298 2.15
5 0.8386 0.7134 2.25
6 0.9022 0.7747 2.32
7 0.9416 0.8199 2.37
8 0.9654 0.8664 2.39
9 0.9796 0.8902 2.40

10 0.9881 0.9086 2.40
11 0.9930 0.9231 2.41
12 0.9959 0.9342 —
13 0.9976 0.9436 —
14 0.9986 0.9513
15 0.9992 0.9577

■ W2 
Â, = 6560 Â

294 Â
164

92.7
53.0
30.8
17.0
10.4

6.1
3.6
2.1
1.2
0.7

In Table 20

. A_ = 1 i^\ ~ 1/(180) — y (176)
' \dlb. = it3W 2\dJx = i8o 8

and 

for filters of the type Dq L2 Dq (q uneven) or Dq H2 Dq (q even). 
The final f value is a function of r only and decreases when r 
increases. In fig. 51 y (Ji) is shown for filters of a different kind 
of the type in § 3. Curve A corresponds to Z>3 L2 D3 which is very 
closely equal to z/(A) for JfL4 M. Curve B corresponds to D7 L2 D7 
(or very closely to D6H2D6). Curve C refers to z/(Â) for ML6 M 
and Curve E to D-LJ)-, (f for this filter is 3.37). All the filters 
have peak transmission at — 6560 Å.

Reflective coatings Dq for Fabry-Perot interferometers and 
filters of the type Dq L2 Dq with q = 7, 9, 11 have in recent years
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jooi-

-30(7--------------- --------------- ------------------------------- --------------- I------
Fig. 51.

y(Â) for filters of different kinds. A: Z)3 L2 D3 (Z)3 = HLH) or MLt M. B: D7 L2 D-¡ 
(Z>7 = HLHLHLH). C: ML6M and E: £>7 L4 D-. hl = 1.38, uh = 2.36 

(and t = 350 Â for the AZ-layers).

been made in many laboratories [26—30], most of them with 
cryolite and ZnS as low and high index materials. Because of 
absorption in the ZnS layers such coatings can only be employed 
for X > 4000 Å. From measurements of 7max and \V2 at Z)7 Å2 ^7 
filters Ring and Wilcock [30] have calculated the absorption in 
a 717 system of layers to be 0.017 at 4100 Å and 0.008 at 4500 Â. 
Polster [29] has produced fillers 7)7 L2 Z)2 with 7max as high as 
0.80 at Áj = 5500 Å, which corresponds to a still smaller absorp
tion in a Dy system of layers. Because of crystalline structure in 
the spacer layer L2 and absorption in the Dq layers it has not been 
possible so far to obtain a value of VF2 lower than 10—15 Å [30].

ÂAt an oblique angle of incidence g we have .rH = — • 180°- cos%H 
z Xand xL = 0• 180°-cos^L (if = —-180° at cp — 0). To
X X

obtain I (7), Rq(Z) and ôQ(Â) must be calculated separately for 
the s and p component by means of the recurrence formula (2, 7) 
combined with (2, 10—11). To find (Xs, Zp) corresponding to Zo 
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at (p = O for a filter I)q L2 Dq it is sufficient to determine xL in 
such a way that y = 2 (x¡ — ô (,rL)) is equal to 360 • p, 
(p = 0, 1, 2, 3 . . .). Such a calculation of p(.r¿) in the neigh
bourhood of the peak can be carried out by means of Rybneh’s 
tables [4] or by means of a graphical method (to be described in 
a following paper).

In Table 21 (Âs, Ap) have been calculated for two filters 
J)6 H2 Dg and Dq L2 Dq with z0 = 6560 Å. It should be noticed,
however, that if the dispersion of MgF\ and ZnS is neglected,

— arc independent of Ao.
Ao

Table 21. (Z = 6560 Å)

4

Ao

9> 15° 30° 45° 60° 75°

s p s P s p s P s P

-06^2^6

¿maxMo 0.9897 0.9613 0.9605 0.9215' 0.9176 0.8805 0.8702 0.8497 0.8318

Zmax 6493 6306 6301 6045 6019 5776 5709 5574 5456

£>7L2D7
0.9866 0.9482 0.9491 0.8616 0.8958 0.8286 0.8399 0.7771 0.7968

Zmax 6472 6220 6226 5849 5876 5436 5510 5098 5227

r 0.2620 0.2840 0.2398 0.3103 0.212 1 0.3428 0.1774 0.3720 0.1448

In Table 22 Hr2 has been calculated for (p = 75° in the case
of the filter 7)7 L2 Dq

. As
\dz/2 = A, 360

dp \ 1
drL/A = Zs2

Ao 
As

•cos/L

(and analogously for the p component).

Table 22.

s P

Zmax 5098 Â 5227 Â

/ 1.90 3.35

0.9887 0.6618

9.7 Â 208 Â

<p = 75° D7L2D7 filter.
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Calculations al oblique incidence up to <p = 30° have also been 
done by Dufour and Herpin [24].

r i 0 • •In Tables 20—22 nH dH = nLdL = — to obtain optimum

conditions at 99 = 0. However, to obtain optimum conditions at 
a definite angle of incidence <p and at a definite wavelength /.r 
we must require that 

- and nLdL
4- cos/7/

■* ’// = = !80° or nHdH

and in this case we have — As = Â/( (no split-up into two 
components), only VI 2 will be different from IV2p) because rs 
and rp arc different (Tables 21—22). It should further be noted 
that if (7, 2) is satisfied at e. g. (p = 45°, Â, — Â in the whole 
region 0 < (p < 45° will be very small.

Finally it should be mentioned that for special purposes it 
would perhaps be valuable to construct all-dielectric filters also 
of the types described in § 4 and §5. If the absorption in a D7 
system is 0.01 and in a /)9 system 0.02 [28] /max for the filter 
D5 Lei Dq Tg Dg would be 0.75, for the filter I)3 L2 D7 Lx I)7 L2 D3 
0.90, and for the filter I)3 L2 Dÿ L2 D3 L2 D3 0.60 (/max for the 
filter I)q L2 Dg would be 0.11). Filters of a similar type have 
been suggested by Turner [31].

Summary.

A general theory of interference filters has been developed 
concerning filters with two three and four systems of reflective 
layers.

In § 1 and § 2 the general equations for a system of thin 
layers have been developed, which are to be used at the calcula
tion of all the optical properties of the system such as /?, T, ô, ß, 
etc. (reflectivity, transmission, phase change at reflection and 
transmission, etc.) when the indices of refraction (77, v — in) and 
the thicknesses (</, /) of all the layers in the system are known. 
These general equations in § 2 have been developed from 
Fresnel’s equations at a boundary treated in § 1. In § 3 a 
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general theory has been developed for interference filters with
two systems of reflective layers I and II. This theory has been
used for a numerical calculation of / (Â), 7? (A) for the Fabry-

Perot filler ML2mM (3/ = Ag layer, L = —layer of dielectric),

and furthermore the phase change at transmission through the 
filter £(Z) has been calculated. (The filter used as phase plate). 
Next, I (Â), and I (2)p of the filter ML2M have been calculated 
at the oblique incidence q>. (92 = 45°, 60°, 75°). In § 4 a general 
theory of interference filters with three systems of reflective layers 
I, II, III has been developed. The condition to get only one peak 
(at a definite order) is

R < 1 —1/1 — — ; R = [ R'-R" (cr2
I a2

and R"

refer to the centre layer II and R' to the outer layers II and 
III), and this condition corresponds closely to the condition of 
obtaining the highest value of Zmax at a definite value of R". 
This theory has been applied to numerical calculations of I (x) 
(and in a few cases also R (Â)) in the case of filters with three 
silver layers M'L2mM"L2mM'. Also £(A) has been calculated.

In § 5 quite an analogous theory has been developed for 
filters with four systems of reflective layers I—IV. Here the 
equation for obtaining optimum conditions is R < H, where H 
is determined by

R>, ct2 refer to II, III and R' to I, IV (R = | R'-R"). Here 
again I (2), £(A) and 7Î(Â) have been calculated for filters with 
four silver layers M'L2mM"L2mM"L2mM'.

In § 6 is treated the improvement of filters with silver layers 
by means of quarter wavelength layers of dielectrics (L and H 
layers of fluoride and ZnS). The properties of filters such as 
ML'H2L'M and ML'HLH2LHL'M have been calculated.

In § 7 the application of multiple dielectric layer systems 
I)q = HLHLHLHL .... (7 layers) instead of silver layers as 
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reflective systems I—IV has been treated. The limited wave
length region X2 — Ào for high reflectivity lias been determined 
for r = 0.26 and r = 0.40. Furthermore, the properties of 
the fillers D6 C/2 D6 and D7 L2 D2 have been calculated at oblique 
incidence (92 = 15°, 30°, 45°, 60° and 75°) as well. Filters of the 
types I)5 L2 Dg L2 I)5 and I)3 L2 J)- L4 I)7 L2 D3 have also been 
mentioned.
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ETRE1 calculated the number of possible energy levels
U originating from an electron with a given 1 in crystal fields 
of any symmetry. These results apply also to an atomic term 
with given L in crystal fields of intermediate strength. Small 
letters are used in this paper to denote single electrons (/, yn, 
etc.) and capital letters to designate total systems (L, Fn, etc.). 
Quantitative calculations of the energy differences occurring in 
the complex ions of the first transition group were first per
formed by Ilse and Hartmann.2’3 These authors applied the 
theory to Ti' 3 and V . Similar calculations have recently been 
reported for Ciir~, Nir~, and most of the other metal ions of 
the first transition group. “ The theory of d2-lcvels in crystal
fields of cubic symmetry3 has been extended to cf’-levels in such 
fields.7 The present paper gives a similar treatment of cfMevels 
in fields of lower symmetry (tetragonal and rhombic, the latter 
being the lowest symmetry of consequence for the splitting of 
the levels), based on the calculations4’5 on d and r/2-levels in 
these fields.

Introduction.

The character system of a state in a crystal field of given 
symmetry can be considered as a p-dimensional vector, if p 
different numbers are given in the set, e. g. p — 5 in the cubic 
case, where the character systems C are given as the sets (e, 
c2, c3> c4> cs)- IR this five-dimensional space, five fundamental 
vectors are given as the “irreducible Darstellungen’’ of Bethe 
(ref. 1, Table 1). The characters are here given in the order of 
Bethe.1 (In the textbook of Eyring, Walter and Kimball28 the 
characters are given in the order (e, c5, c2, c3, c4) in the cubic 
while Betiie’s order is not changed in the tetragonal case) 
They correspond to the quantum numbers

1*
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c (A) == (A 1, 1, 1, 1 )

c (A) -= (h 1, — 1, 1, 1)

c (A) == (2, 2, 0, 0, 1) (1)

c (A) == (3, — 1, 1, - 1, 0)

c (A) == (3, 1, 1, 1, 0).

Any non-fundamental vector C can be expressed as a linear 
combination of the fundamental vectors in only one way:

C = C (rx) + u2 (A) + «3 C (r3) 4-n4 C (P4) + n5 C (A). (2)

The linear combination coefficients an of eq. 2 are always 
positive integers.

The character systems C (L) found by Bethe by consider
ations of the single (2 L | l)-dimensional rotation group can be 
expressed in the familar tables of cubic term splittings:

c(S) = cm)

c (P) = c (r4)

c </>) = c <r3) + c (A)

C (F) = C (A) + C (A) + C (A)

c (G) = c (A) + c (A) + C (A) + c (r5)

C (W) = C (A) + 2 C (A) + c (A),

where S, P, 1) is the usual spectroscopic notation for L = 0, 
1, 2, . . . This table was first given by Bethe, and extended for 
some higher values of L by Hellwege.8 It is periodical1 with 
L = 12 (A is a positive integer)

C (12 A + L) = A C12 + C (Å), (4)

where C12 = (24, 0, 0, 0, 0) - C (A) + C (A) + 2 C (A) + 
3 C (A) + 3 C (7 5).

An important operation is the formation of internal vector 
products from the vectors (e, c2, c:i, c4, c5) and (e , c2, c3, c4, c5), viz.
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C = (e e', c2có, C3C3, c4c4, C5C5). (5)

These products C can also be expressed in the fundamental 
vectors of eq. 1, giving the results of Table 1. This is a mul
tiplication table of JTp and 7^, showing the validity of the com
mutative law:

Table 1. Internal vector products in cubic symmetry.

Fr f2 F 1
r> P5

Fi............... Fx f2 F F4 F
F2............... f2 F F f5 F
F3................ f3 F F + 7 2 + F3 f4 + F F + f5
A............... f4 F f4 + f5 F + F+F 7 5 / 2 F F + F4 -L 7’5
r5............... f5 F, f4 + J\ F + f3 + r4 + f5 Px-F F3 + F4 -F Fs

In crystal fields of tetragonal symmetry the character systems 
are also live-dimensional vectors, and there are five fundamental 
vectors C(FZ1), C(F/2), C(F/3), C(Fi4), and C (Fz5) with the 
coordinates given in ref. 1, Table 5. It is seen that the first 
coordinate, e, is 1, 1, 1, 1, 2, respectively. This is normally called 
the degeneracy number of the state, analogous to e in the cubic 
case. We shall here denote cubic quantum numbers by Fcn (or 
simply r„ where no misunderstanding is possible), tetragonal 
numbers by Fln and rhombic ones by rrR.

The tetragonal character systems of L, C (L) are given in 
ref. 1, Table 6. On the analogy of eq. 4, C (L) is periodical1 
with the period 4, i. e.

C (4 Â + L) = }. C, + C (L) I
í (b)C4 - C(P) + C(7)) = C(S) + C(F). I

Since C4 is thus expressible, all tetragonal C (7>) can be expressed 
as linear combinations of C (S), C (P), C (D), and C (F) with 
non-negative coefficients. This is the cause of the similar be
haviour of a cubic C (L) vector when the following arguments 
are considered.

The values of tetragonal C (L) can be found from eq. 6 and 7 :
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c (As)
(7)

2

(S)

this cannot be done exclusively

C(/t) = C(/h) + 

c(F) = c (/;.) +

7 give the two only possible

know whether a certain cubic state ACflIt is now of great interest to
can be identified with certainty as a sum of tetragonal stales
This corresponds to the effects of making a cubic crystal
field very slightly tetragonal and thus forming tetragonal splittings 
of the cubic levels. Eq. 3 and 
solutions :

Ai
As

Betiie chose possibility 1, but 
on the basis of these equations.

From the internal vector products, fable
structed by methods similar to those outlined above for fable 1 :

Possibility 1

i 7 H

A‘2 — 7 /3 
As * Al + J 
Ai — Aa 4- j 
As- As + ^

Possibility 

Ai- Al 
Aa-Ai 
A3 — Ai + 

Ai — Aa + 
As-As +

2 can be con-

Tabi.e 2. Internal vector products in tetragonal symmetry.

Al Aa A3 Ai As

Ft,............................ Ai F., As Ai As
/'t>............................ a2 Al Ai As As
F.............................. As Ai Ai 47 .> Z7-

n............................. A4 As 17 0 Ai As
r.y............................ As As As As A ■ Aa + As + Al

fable 2 gives no reason for preferring possibility 1 of eq. 8 
to possibility 2, since it is exactly symmetrical with respect to 
change of /’z;i to /’;4 et vice versa.

In the rhombic case all the four fundamental vectors have 
e = 1, i. e. they are all only once degenerate. According to Betiie,
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they are connected with the tetragonal quantum numbers in the 
following way:

They have thus the following multiplication table:

Table 3. Internal vector products in rhombic symmetry.

Trl Tr2 Cr3 Fr4

rr<............................................ Trl rr9 Fr3 Fr4
rr2................................................. 7*  2 rri Tr4 Tr3
rr o................................................. Fr3 TrL rr9
rr4................................................. Fr4 rr2 Tri

Crystal Fields in Co-Ordination Compounds.

From the formulae in ref. 4, it is easily shown that in octahe
dral complexes the crystal field energy levels are determined 
only by three quantities which represent the perturbations 
from the sets of two ligands on each of three axes in the 
Cartesian coordinate system. This is an extension of the equi
valence of z-axis contributions, applied to copper (II) com
plexes,4 and in accord with the empirical observations of Sueda, 
that the absorption spectrum is determined only by the influences 
of the three sets of ligands in iruns-positions.

In the following calculatioAs the distances of all the ligands 
are assumed to be equal, giving the same values when put in 
the functions4 B2 and B¿. However, the following considerations 
are also valid when different values of B2 and B4 are obtained 
from each of the ligands. The difference between the six ligands 
is expressed as differences in the effective point dipole moment 
a, but the results can be applied to ionic charges q, G2 and (r4,
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as well, rhe sum of the dipoles in the direction of the .r-axis 
and ¿/-axis and "-axis are represented by /z2, and //3.

fhe complex is said to have a crystal-field of cubic symmetry, 
if = ii2 = ,«3. If two of the dipole moment sums are equal, 
but different from the third, e. g. = //2 ¿¿3, the crystal
field has tetragonal symmetry. Whenever all the three are dif
ferent, one has rhombic symmetry, which is the lowest symmetry 
possible in any octahedral complex.

The energy of a given level is expressed formally as

E — E (free ion) 4- E (common pert.) 

d- 7: (cub) + E (tetr) + E (rhomb).
(10)

E (free ion) is the energy of the corresponding atomic term, which 
is perturbed by the crystal field (by interaction between different
terms % (free ion)). E (com
mon pert.) is the energy equal for all levels of the electron con
figuration due to the contributions of the perturbation. E (cub) 
is the energy of the corresponding cubic and E (tetr.) of the 
corresponding tetragonal level (see the splitting rules eq. 8 
(Poss. 1) and eq. 9), and finally E (rhomb) the remaining energy, 
which is only different from 0 in /^-levels, split to /’r3 and rr4, 
and in the interacting two Fri states. The latter result is shown 
in what follows to be connected with Bethe’s theorem of the 
centre of gravity of a group of levels whose degeneracy is re
moved by fields of less symmetry. is not regarded at all, 
because it only contributes to E (common pert.). E2 occurs alone 
in E (tetr), and E (rhomb), while B4 occurs in ah the three last 
parts of eq. 10. In crystal fields of cubic symmetry, E (tetr) = E 
( rhomb) = ().

In the complex ions with six equal molecules as ligands, the 
crystal field does not a priori need being of cubic symmetry 
since the ligands may have slightly differently induced dipole 
moment and distances. Eq. 10 would give decreased energy if 
E (tetr) and E (rhomb) can be negative, i. e. some tetragonal 
or rhombic splitting of the ground-state occurs. Van Vleck10 
pointed out early that the Jahn-Teller effect would only allow 
complex ions to be stable in which the ground-state is only once 
degenerate on a (2 L + 1) basis, i. e. e = 1 in the corresponding 
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vector. The only stable octahedral complexes of cubic symmetry 
thus have or r2 as ground-states, while the others deform to 
tetragonal or even rhombic symmetry (in the case of rt5). How
ever this theorem concerns only the direction of deformation, not 
the absolute deviation from cubic symmetry.

The ground-states in most magnetically anomalous ions (with 
the total spin quantum number S less than the S in the free ion) 
are Tcl (in d:Tc^), while the magnetically normal ions with the 
maximum value of S are distributed in the following way in 
octahedral complexes :

d and d6 rhombic or “compressed” tetragonal 
d'2 and d1 tetragonal
d3 and d8 cubic
d4 and d9 tetragonal
d5 cubic.

(H)

Van Vleck10 has maintained that systems with one d-electron 
have the least energy when they have rhombic symmetry. As is 
seen in the following section, tetragonal symmetry with /q > //2 
= /z3 would also give a stable once degenerate ground-state. The 
“compressed” tetragonal form of the complex would probably 
have approximately the same energy as the rhombic form. There
fore it is possible that the titanium (III) hexa-aquo ion exists in 
an equilibrium between the two forms. Whenever tetragonality 
of the type = m2 > /¿3 is stable as in d4- and d9-systems (e. g. 
chromium (11) or copper (II) complexes), this structure will be 
energetically favoured because the ligands are held in place by 
the steeply increasing potential of the sphere-symmetrical kernel. 
The tetragonality can thus be due only to weakening of some of 
the electrostatic bonds to the ligands. This is more likely lo 
happen for two of the six ligands rather than for four as in the 
case of “compressed” tetragonality.
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Two Interacting States in Crystal Fields of 
Intermediate Strength.

When a given combination of S and T,( is represented only 
once in an electron configuration, its energy will be linearly 
dependent on crystal field strength (in cubic fields (E1 E2),
where E± is the energy of a y3-electron and E2 the energy of a 
y5-electron). Phis dependence is found by calculations on either 
weak or strong crystal fields. The two latter terms are defined 
in the following way: In weak fields (El -- E2) is negligibly 
small, compared with the distances between terms of different L 
in the free ion. In the strong fields (E^ — E2) much larger than 
these distances.

When two or more levels with the same S and rn occur, 
the weak and strong crystal fields may give totally different energy 
expressions. In the case of cubic symmetry the values of N in 
systems with n (/-electrons correspond to the number of y3- 
electrons. We define:

E(cub) =pV-(12) 

In weak fields Ar is not always an integer and in strong fields 
the original terms with definite values of L can no longer be 
distinguished. The diagonal sum rule only ensures7 that the 
sum + N2 + . . . T Nq of the q different levels is constant for 
each value of the crystal field, corresponding to varying inter
mixing of the strong-field wave-functions.

Orgel11 determined this interaction in a very important case: 
the two r4 originating in weak crystal fields from 3E and 3P in 
(/2-systems, and going to y- and yl in strong crystal fields. The 
numerical result can as well be applied' to the two of highest 
S in (Z3-, i/7-, and c/8-systems. In what follows, the interaction 
between two states is generally treated without use of Condon- 
Shortley parameters. The energy of the two states in inter
mediate crystal field strength can be found as the two roots E 
in the matrix of second order11

-E2) e K

E^ + Eft- 2_"|(E, -Et)-EK
= (I. (13)
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K is the energy of interaction between the two states considered. 
Na and Nß are the integers corresponding to the strong crystal 
field case. In the free ion (Er— E2) equals 0. Here the two energy 
roots are Ea and Eb:

Ea I  Ea Eß i I Ea Eß 
Eb\- 2 (14)

It is seen that Ea and Eß always occur in the closed interval 
between Ea and Eb. It is thus possible to choose a parameter x, 
such that

0 < .r < 1

= (1 — x)Ea + xEb

Eß = xEa + (1 — .r) Eb.
Eq. 14 and 15 then gives

K*  = x(l-x)(Eb-Eay.

(15)

(16)

The parameters x and (1—.r) chosen in eq. 15 are just the 
intermixing coefficients16 of the strong field-states in the states in 
the weak field. This relation is bionique in the case of only two 
interacting states, found for instance in dMevels in cubic fields. 
In d8-systems, (1 — rr) is to be substituted for x in Table 4. 
The data are compiled in Table 4. Two interacting states have

Table 4. Interacting states among dMevels in crystal fields of 
cubic symmetry.

Quantum 
number

3A..............................
..............................

xr3...............................
*r5...........................

Ea Eb X

3 F 3p Vi

ES' 3/-

1D 1G 4 /

rD lG 4/

K States in 
strong 
crystal 
fields

\Eb~Ea)

= X— X2 1
4/
/25 + n

6/
/ 25 ?5 +

12// 49

12// 49
7Î + y 5 y 3

the smallest energy difference when the diagonal elements of eq.
13 are equal, and then it is 2 K. Since the interaction energy K 

has nearly its maximum value, ~(Eb— E(l), for the three d2-sets 
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with S = O, their minimum distance must occur at very small 
crystal-held strengths, i. e. the second-order ellects in (E\ — E2) 
are in most cases more important than the first-order effects 
found in weak cubic fields. The asymptotes in strong crystal 
helds are given by the equations 

E

and the analogous with Eß and Nß.

One d-Electron Systems.

As mentioned above, the 27J-state of one (/-electron is split up 
in fields of lower symmetry as shown in Fig. 1.

z'
/ 
XII 

I
/
\

 \

\.  

free
ion

cubic tetragonal 
symmetry symmetry

rhombic 
sym me try

Fig. 1. States of one d-electron in octahedral complexes of decreasing symmetry.

Ballhausen1 calculated the energies of the rhombic sym

metry. (In all the following equations, the factor 
for convenience). The three lowest states have: 45 f2 is omitted

21

- ^2
(17)
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The affiliation to tetragonal states can be found by putting 
/q = /h- I11 the limit, where = /q = /q, the cubic stales are 
found. The rhombic quantum numbers Fr3 and Pr4 arc chosen 
arbitrarily. The energies of the two highest states are roots 
of the equation

E 2 (^22 H- -^2—2 + F00) + (H22 H0()

b —2-^oo---- (^2o)2) — t) ,
(18)

giving a square-root dependence. The functions Hab are defined 
in ref. 4. Only in the case /q = /t2 is the dependence on crystal 
field strength linear, because H20 then equals 0. This represents 
the interaction between the two states with the same rhombic 
quantum number Fri.

In the tetragonal case — /<2, these two states are normal, 
and the four possible states are:

1 T> 19 ,, 2 1
Äh 7 + 84 \ + /h 7^ + 21«

1 3 2 2
Äh 7^ +28 Bi + Äh yA + yA

(19)

For use of the formalism, expressed in eq. 10, the cubic con
tributions must be written

A-3: (cub ) — (/q + /q T /q) g B4

As : # (cub) = — (/q + fi2 + /q) ß4 
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and the tetragonal contributions

r,3:E(tetr) = (&+Ä

/’„Oí (let,-) = +

E(tetr) =

ri5:£(tetr) = (^

(21)

The rhombic contributions of Ti3 and Ft[ together equal 0 and 
must be considered as interaction effects of the type discussed 
in the preceding section. The rhombic contribution of rt4 equals 
0, and that of

Ft:y. E (rhomb) = ± (/q (22)

It is not possible to use a single parameter Et for E (tetr) analogous

to (£\ — E2) =

tributions of B4

(Z'l + + //3) ^4

compared with those

for E (cub). The con-
4 of IE in eq. 21 are -

times higher in Fi4 and rt5 than they are in r/3 and rn.
The theorem on centres of gravity1 is valid for all the indi

vidual splittings in a given field. However, this theorem is also 
valid for the further splitting of a degenerate level due to fields 
of lower symmetry. This is of consequence for the following 
sections.

Two d-Electron Systems.

The energies of the c?2-levels in tetragonal fields ’are compared 
here with results for c/n-levels in tetragonal fields, analogous to 
the theory of cubic fields.7

We shall first calculate the electron distributions in strong 
tetragonal fields on I he quantum numbers yi5, yt4, ytl, and yti 
in order of increasing energy (in fields with almost no cubic
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Table 5. d2-levels in strong tetragonal fields.

Degeneracy
number

Electron 
distribution Levels

1 2
7/3 ^/l

,,2
4c 3 4 7/3 7/1

(c3)
3ri3(C2,3F)

1 9
7/t 'Jn

4 7/3 7/4
(c4, '0)

3T/2 (c4)

8 7/ 3 7/ 5 3ri5
Yc 3 7c 5

4 7/1 7/4
^(cö)

3rZ4(c5,3F)

8 7/1 7/5
lrt:>

1 9
7/4 l//t

7c 5

8 7/4 7/5
lri5 (c5)
3/f5(c4)

14h

6 9
7/5

1T/3 (c3)
(c5)

3-Tío(c4)

Energy
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contributions, the order of yZ4 and yz, is inverted). It is fortunate 
that the corresponding cubic quantum numbers y5, y5, y3, and 
y3 are then definitely fixed. Table 2 is used for the vector product 
yt ytq when p q. This case is not restricted by the Pauli 
exclusion principle, and thus both values of 5 = 1 and 0 occurs. 
Fhe case p = q is more difficult. When yZp has e = 1, the 
electron pair yL is a closed shell, the term is 1Fzt. When e = 2, 
as in yZ5, it is necessary to collect further information. The 
known case of </2-levels gives S = 1 for 3/)2 and S = 0 for the 
three others 1I)i, 17)3, and 1FZ4. Table 5 give the energies in 
strong tetragonal fields of these levels, depending on the two 
parameters /q (= /q) and /q-

1 o 4 . , , ,• «latter to - yz5 + - yZ3 yZ5. Thus the intermixing coefficients given

The levels of Table 5 can be divided as follows: In cases 
where more levels with the same tetragonal quantum number 
are present in the same of the three groups y2c3, yc^yc5, and y2cb, 
nothing can be said with certainty in connection with a single 
level in weak fields. In cases where only one level with the same 
tetragonal quantum number is present in a group, the cubic 
quantum number is certain. This can then either be exhibited 
by one level, which has the given S in the whole d2-system, or 
the cubic number can be exhibited more times. In the yc3 group 
the former case occurs in 37)3, which can only be the weak 
field level 3F (3Pc2) while the latter case occurs in 1FZ3, which 
surely is a 1Fc3 state, but which cannot be identified with cer
tainty with any atomic term, since rI) and 1(t both have 1Fc3- 
levels.

In the best determined class, which contains 3FZ3 (3F), 1FZ2 
(Tj), and 3FZ4 (3F), the energy (given in Table 5) in strong crystal
fields is verified in ref. 5. The partially determined class is re
represented e. g. by the two 3FZ2-levels:

3^í2(3^): Fi
r 4 3 4 „ 2 „

+ F 3 35 Bs_ 7B1

3/;2(3p):
9 

-rB,a

(23)

4 2 1
1 he former is equal to the energy of ~ 7/s + yZ3 yZ4, and the



Nr. 14 17

in Table 4 seem to apply to the problem of distributing strong 
tetragonal fields with the intermediate step of strong cubic on 
the weak tetragonal fields. If it is allowable to use the “centre 
of gravity’’-theorem on the 3Fc4 by beginning tetragonality, it 
should further be valid that E (tetr) in 3Pi5 in the levels should 

equal — — E (tetr) in the corresponding 2ri2. Thus

(IP, c4):
|#2

+ /Z3
3

(24)

The latter result in eq. 24 is again confirmed3 while the former 
result is complicated by the fact that two 3F/5 occur in 3F, and 
their mutual interaction thus is also reckoned. But the diagonal 
sum-rule can be applied to all the 3Fi5. Their total energy is to be

3/ L5 = 7/3 7/5 + 711 715 + 7/4 715

1 , 1 1 4
7^2 + Z^3

21

and when the energy of 3Fi5 (37J) is subtracted,

(25)

2 1 ’ 9 4
) = Ei + 35ßa_7S* + Es -21ß‘

also found by the direct calculation.5
Thus it seems possible by application of the best determined 

levels and by extended use of the theorem concerning the centres 
of gravity to determine all or nearly all the energies of tetragonal 
levels. The restriction (also imposed on the method used in 
ref. 7) is that only average values of several levels with the same 
2 +1FZn can be estimated.

Special interest is connected with the ground-state of diamag
netic nickel (II) complexes. Due to Pauli’s holeequivalence theo
rem, it is the level among the 1D-Ievels (see Fig. 3) which has the 
highest energy in strong tetragonal fields in d2-systems. Previously3 
it has been discussed, if 1/)2 (1G, 1Fc4) was the ground-state in the 
rather strong tetragonal field occurring in the square-planar

Dan.Mat.Fys.Medel. 29, no.14. 2 
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complexes of stilbenediamine, cyanide, etc. Rather, the state 
irtl QI), 1Fc3) transferred to the strong tetragonal field state 
is lowest, due to second-order effects in the crystal-field strength, 
while irt2 was mentioned as having the lowest energy among the 
singlet states al more moderate crystal-field strengths.

In cubic complexes, xFc3 QD) will at even quite small field 
strengths have the linear energy expression (/i, — /<2 = ^3)

E = y(V>)+y (27)

while the cubic ground-state 3Fc2 (3F) has always

E = QF) + 13, (28)

(see Table 4). The energy differences between the two states are 
thus nearly constant*,  being the differences between terms in the 
free ion :

e(‘C3)-/-;C/;2) = yCo> + 3(»G)-CF). (29)

Exceptionally these energies are not known**  from atomic 
spectroscopy, 2 but can with a probable error ~ 1000 cm-1 be 
predicted from the theory of Condon and Siiortley13 to be 
(XZ>) — 13000 cm-1 and (XG) = 22000 cm-1, when (3F) = 0 
cm-1. finis, the energy difference of eq. 29 will be ~ 17000 cm . 
In ATz (H2O)^+ measured on the Cary spectrophotometer a 
very weak band has been found as a shoulder at 18500 cm-1 
with a half-width 500 cm-1. It may be identified as a 3F2 (F) —> 
XF5 (D) transition which is predicted ~ 23000 cm-1, or the 
similar XF3 (D) predicted ~ 17000 cm-1.

In tetragonal complexes the energy of 3F(3Fc2) has no tetra
gonal contributions (eq. 10) while 7c3 (1^c3) split up, y,3 
(xF/t) being the lowest state. If it is assumed (in analogy with 
the arguments given for the second class of states in Table 5) 
that the state in eq. 27 will take over also all the strong field

* Nothing is known about the cause of diamagnetism in bis (triarsine) 
nickel (II) ion14 which is the only nickel (II) complex supposed to be cubic and 
diamagnetic.

** Recently. Shenstone30 has found lD at 14032 cm-1 and 4G at 23109 cm“1. 
(Added in proof).
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Fig. 2. Triplet states of d2 in weak and strong crystal fields of cubic and 

tetragonal symmetry.

tetragonal splitting by being a strong cubic field state, its energy 
will be (/¿j = //2 > /c)

(27)4 3 , 4 „ 19’ 4 „ 9
E = yC7>) + y(T;) + /q 7 02 “H 21 4 + /C —T/ 21

The energy of '/)2 (1G, irc4) is then exactly

4 , 1 4 2,1
= 06) + /h ~ -ß2 4“/ + Pa -7 «. + ,!«.] (28)

Since the difference between the energy in eq. 27 and 28 is 

Pi

composed of the positive parts y {(XG) — (x^)} ~ 5000 cm-1 and

- —B4 (this is positive due to the hole-formalism4 in el

systems) of the order of magnitude „(£)— F2) in the corre-
J 9*

5
6
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Fig. 3. Singlet states of d2 in weak and strong crystal fields of cubic and 
tetragonal symmetry.

sponding cubic complexes, no nickel (II) complex has the ground
state of eq. 28.

The condition for a nickel (II) complex to be diamagnetic 
is thus the tetragonal part of eq. 27 being more negative than 
the energy difference in the free ion of the intermixed states, viz:

4 3
<(3F)—y0G)-----17000cm-1. (29)

If ,«3 = 0, this condition is fulfilled even at/q = ¿’2)

= 19000 cm-1 when ß2 is put5 = 2.2 B4. In reality two opposite 
tendencies remove a given nickel (II) complex from this simpli
fied model: //,3 usually is not vanishing, since the diamagnetic 
complexes have solvate molecules, anions, etc., on the z-axis,
while on the other hand may very well be larger than in the 
corresponding cubic complexes = ,//3) where steric inter
ferences prevent the ligands to be so close to the nickel ion. While
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the yellow diamagnetic complexes with their principal hand 
maximum ~ 22000 cm- (with Ni (CN)4 on the front with 
32000 cm-1) have quite large energy differences between their 
states, the red ones ~ 20000 cm-1 arc presumably only diamag
netic with some difficulties. E. g. the red nickel (II) inner salt 
with bis (acetylacetone) ethylenediimine is probably strained by 
the tendency of the Schiff base-ligand to be planar. The complex, 
known to be nearest the limit of paramagnetism, is the salmon 
pink [AT en2] [Ag Br J]2 of Nyholm14 (we have also prepared the 
similar salts with the anions [Ag Br2]~ and [Ag J2]~~ by pre
cipitation with saturated solutions of the silver halide complexes 
in concentrated solutions of the sodium halides), while the tetra 
(C, C, C , C ) methylsubstituted ethylenediamine10 forms stable 
yellow nickel (II) complexes in solution. The absorption spectra 
of several nickel (II) complexes with these and other amines 
are now being studied in this laboratory. Fig. 2 and 3 show how 
the various levels in a d2-system are split up by crystal fields of 
different symmetries. Fig. 2 gives the triplet levels and Fig. 3 
the singlet levels.

Three and Four d-Electrons.
As pointed out by Santen and Wieringen16 the maximum 

values of S in (/"-systems give especially regular crystal-field 
splittings. These are inverted in some cases, viz. for /Estates in
octahedral complexes:

Regular (F5 lowest) Inverted (F3 lowest)
279 (d) 5D (d4) > (30)
5 7) (d6) 2D (d9)

and for F-states in octahedral complexes :

Regular (F4 lowest) Inverted (F2 lowest)
3F (d2) 4F (d3) (31)
4F (d7) 3 F (d8)

A closer investigation shows that these inversion rules also apply 
to the tetragonal splitting. Thus the numerical results4’5 for 
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P-, /)-, and F-states of highest multiplicity can easily be adapted 
to these cases.

Since there will hardly be any possibilities of comparing the 
theory with experimental data for states of lower S in the magnet
ically normal complexes, the lengthy calculations along the lines 
given above will not be performed here. It may be noted that 
the strong tetragonal field states of ybt4 yctí yr¿ can be found 
by direct multiplication from 'Table 2, when the result of y¡b 
and the hole-formalism = yt:> is remembered. But a point 
of great chemical interest is the behaviour of the lower states of 
magnetically anomalous complexes. According to Saxtex and 
Wieringen1 only ¿Z4-, (I5-, d6-, and ¿/’-systems should give 
magnetically anomalous complexes of cubic symmetry since they 
are the only ones which have holes in the y5-shell in the magnet
ically normal state, to which y3-electrons can be transferred 
under pairing and decrease in S. 'This is in very good agreement 
with experience. The best known diamagnetic complexes of the 
first transition group arc the octahedral cobalt (HI) complexes. 
Their ground-state, 1Fcl (y5) is only once degenerate and is thus 
undisturbed by tetragonal and rhombic effects. Second-order 
effects can only occur' from y*  ys states, which are so excited 
that the effects of nondiagonal elements K of eq. 13 are negligible, 
except at very small (E\— E2), where they repulse yb from its 
high free-ion energy E (intermixed) down along the line in the 
Orgel diagram11

12E = E (intermixed)— ~—(E1— E%). (32)

The value of E (intermixed) must mostly be composite of 1G 
and 4E The energies of singlet terms in the free cobalt (III) ion 
will probably never be found by atomic spectroscopy, Racah’s 
theory1' for the ¿/"-terms give the expression in Condon-Shortley 
parameters :13

E (4G) = 6 /’ o — 3 b 2 — 4

±| 70S (F2 — 5 F4)2 —420 (F2—- 5F4)F4 + 11025 F4 (33)

E(4/) = 6F0—15 F2 —9F4

E ( >p) = (j Fo — 21 F2 — 1 89 F4.
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With the reasonable13 values of F2 = 2000 cm-1 and F4 = 200 
cm-1 the order of magnitude of the energy difference between 
the lowest singlet state and 5Z) is found to be 48000 cm-1. Since 
the lowest cubic state with 5 = 2, viz. 5T5 (5D), has the slope

2— ~(FX— F2) the Orgel diagram, it is seen from eq. 32 that 

(F\ — F2) must be at least 24000 cm-1 in order to get diamagnetism 
in cobalt (HI). This is already the case in Co (H2O')^ + + as 
found in alums by Asmussen?

While the first band in chromium (III) complexes gives an 
almost exact measure of ÇE1— 1\2) because7 the transition 
3F2 (3F, yl) -+ 3F5 (3F, y5 y3) has no intermixing with different 
values in strong and weak cubic fields, it is not possible to make 
a similar statement on cobalt (III) complexes. IL is only possible 
to identify the four states of y5 y3 in strong crystal-fields?’11 the 
two strong bands being due to 8 — 0, 1Fi and 1F5, while the 
weak band discovered in the red6 must be due to either 3F4 or 
3F5 with S = 1. The constant energy difference in the two strong 
bands ~ 8000 cm- is in our opinion due to intermixing of 
free ion-terms in the diagonal elements in eq. 13, and it would 
then be accidental if it was equal to 12 F2 — 60 F4 as maintained 
by Orgel.11

The two excited states have the tetragonal splittings 1Fc4-> 
1F/2 + and 1Fc5-> 17)4 + 1F¿-). If it is assumed that these 
states have no interaction with other states, their F (tetr) (see 
eq. 10) will be: B2 and B4 > 0)

= 7/5 7/4^0 (y“l —^3)

— yt^yt^y^-

irt5 = (Bi—Bs)

17m = yfsWm (/f — Fs)

(34)

The assumption of no interaction between the states will probably 
not be valid in the case of 1F<5 and 1Fi5. Orgel11 is of course 
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right in maintaining that Fc5 has no first-order tetragonal splitting 
in contrast to Pc4. But this situation may be reversed in strong 
crystal fields. Of the energies in eq. 34 it may be concluded that 
1Z1i2 has so small a value of E (tetr) (without B2 contributions) 
that if the theorem of centre of gravity can be applied to this 
and the other level of it has a very small tetragonal splitting 
as compared with the 1/)4 plus a mixture of1/)-, and 1/).-), leading 
to irc5.

It is empirically well known that the first of the two strong 
cobalt (III) bands generally show much larger tetragonal splittings 
than the other. As seen above, it can be interpreted by use of 
eq. 34 as being the transition to irc-) contrary to 1/'c4. In pro
nounced tetragonal fields, as found in trans-[Co en2C/2] , the 
lowest excited state is then 1^t4 (ytö 7/4 7ti)- At a tetragonality 
so strong that yl4 and has the same energy (as found e. g. 
in copper (II) complexes) this slate should be competing with 

(ytó yh) as ground-state.
The question of tetragonal splittings in chromium (III) 

complexes seems quite complicated. Not only does the first 
strong band show this splitting,11 but as will be shown in 
another publication by one of us, the second band is strongly split 
in the bluish grey hydroxo form of the chromium (III) ethylene
diaminetetraacetate.20 C. E. Schäffer of this laboratory has 
discovered that the dinuclear “basic rhodo” complex,2 which 
is formed transiently by air-oxidation of chromium (II) in ammonia 
water, shows on the Cary spectrophotometer four very narrow 
bands in the near ultraviolet. The first band 3jr’c2->3/'Cÿ should 
show little first-order tetragonal splitting, since one of the levels 
in 3rc5 is 3/;4 (?i5 Xt3)’ which has the B,-contribution = 0.

Some of the strong bands in magnetically normal complexes 
predicted by the crystal field theory are not very easily detected. 
The most prominent examples are:

d2: 3/\ (3F) 3F2 (3F) I
d3: 3/\ (3F) —> 3/\ (3/J) (35)
d7: 3F4(3F)->3F2(3F).

In d2 and d7 the excited states are only once degenerate on a 
(2 L + 1) basis and might be suspected to give weaker bands 
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than the other, three-fold degenerate states with maximum 5. In 
vanadium (III), the band seems nevertheless observed at 38000 
cm-1 in the reflection spectrum of A'2l'VF5H2O] as measured on 
the Beckman DU. From the other bands in this complex a wave
number 35000 cm-1 is predicted. In cobalt (II) the band is now 
identified with the quite weak band6 at 16000 cnU1 in Co (H2O)q + 
and the somewhat stronger bands in Co ÇNH3~)q + at 18200 cm-1 
and in Co en3+ + at 18500 cm-1 as described in the ninth paper 
of this series.22 Since the band in purely cubic complexes cor- 

9
responds to the energy - (£\ — B2)> this quantity is now assumed o
to be 9000 cm-1 in the aquo ion, which must be slightly rhombic, 
as seen above.

d3 is represented in vanadium (II) and chromium (III). In 
solutions of vanadium in 6 4/ HCl, reduced by zinc, a third band 
can be observed at 26500 cm-1 besides the two at 12200 and 
18000 cm"1. Since it does not have the place of the second band 
of vanadium (III), it is most probably one of the bands given 
in eqs. 35. Since (Ex — E2) is as small as 12000 cm-1, the bands 
are distributed nearly as in Ni en3~ \ the two /’4 have nearly 
their minimum distance7 = 2 A' in eq. 13. In chromium (Hl), 
low band at 38000 cm,-1 observed of Tsuciiida23 in Cr (^H2O')q+ + 
may represent the third strong band with the corresponding 
(Er— E2) = 17500 cm-1. The red solutions of chromium (III) 
chloride in absolute ethanol saturated with lithium chloride 
(probably containing Cr Cl3 alc3) show also the third band 
clearly. Here the two first bands are shifted much toward the 
red, 12000 and 19000 cm"1, respectively, while a similar band 
is observed at 26000 cm-1. Further out in the ultraviolet, the 
electron transfer spectrum due to the easy remove of electrons 
from chloride ions are observed.

Five J-Electrons.

These systems7 have no first-order crystal-field splittings in 
complexes of cubic symmetry. Their second-order interactions 
can be treated by methods given above in the second section. 
The absorption spectra of magnetically normal manganese (II) 
and iron (III) consist of very weak bands7 due to the transitions 
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from the ground-state AS to splittings of quartet states. Besides 
this, iron (III) compounds have very intense electron transfer 
spectra as seen in Fe (0H)+ +, Fe (SCN)3, Fe S20% , etc.

Among the quartet stales, and 4F2 are only represented 
once, and they have both A = 2 in eq. 12, as also 6F1(AS). 
4F3 is represented twice with Ar = 2 (4D and 4G). They continue 
also without interaction in strong crystal-fields. Probably the two 
4G-levels 4F3 and 4FX are represented in bands6 at 24900 and 
25150 cm-1. These narrow bands were also found by Gielessen24 
and in solid manganese (II) salts they split into 12 components. 
Due to the Kramer degeneracy, more than 6 were not expected, 
even due to (L, S) coupling effects. But many of the narrow 
bands found by Gielessen are probably coupled with vibrations. 
Of great importance for the observed spectra are the slates iI\, 
which occur in 4P, 4F, and 4G. They have the energies in the 
free manganese (II) ion12 29200, 43600, and 26800 cm-1 re
spectively. The two terms 4G and 4P are liable to interact strongly- 
due to the small distance of the terms. If in the strong crystal 
field the lowest level has the energy in cubic complexes

Mn (II) iFi (y4 y3) : 28000 cm 1 — (F\— E2). (36)

(Fx — F2) is then = 9200 cm-1 in Mil (H2O)£+, which seems 
very probable, and similar calculations for Fe (H2O)§+ + give 
(P4— P2) = 22000 cm-'. The middle 4F4 in Mu (H2O)¿~ should 
be placed ~ 30000 cm 1 and is probably the band6 at 29700 cm“”1. 
4F5 is finally the explanation of the bands at 23000 cm-1 in 
manganese (II) and at 18500 cm-“1 in iron (III).6 The three 
interacting levels are here due to 4/), 4F, and 4G.

Geometrical Configuration and Absorption Spectrum.

Due to the fact that only three parameters /q, /z2, and //3 
determine the spectrum of a given complex with constant1 Ji, Z 
and electron configuration, the symmetry of the crystal fields is 
often surprising high, fable 6 gives the symmetry of complexes 
with at most three different ligands A, B, C in the octahedral 
complexes M Aa Bb Cc (a > /? > c) with six equal distances.
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Table 6. Symmetry of octahedral complexes with at most three
different ligands A,B and C.

MA6b c 
masb t 

cis (1, 2) MA4B2 I 
trans (1, 6) MAtB2 I 

(1, 2, 3) MA3B3 c

(1,2,6)MA3B3 r
cis (1, 2) MAtBC r 

trans (1, 6) MAtBC t 
(B 1,2 C 3) MA,BtC t I 
(B 1,2 C 4) MA3B2C r

(B1.6C2) MA3B2C r 
(B 1,2 C 3,4) MA2B2C2 r 
(B 1,2 G 3,5) MA2B2C2 t 
(B 1,6 C 2,3) MA2B2C2 t 
(B 1,6 C 2,4) MA2B2C2 r

Among the tetragonal complexes, the tetragonality can be 
measured by (/q — //3) as seen from eq. 21 and as also found 
directly from ref. 4. It is seen that this quantity is (— 2) times 
as small in cis J/A4B2 as ’n trans MA4B2, since

cis-J/A4B2

/<1 = P 2 — /El + ,WB
/z3 = 2

/A — Z<3 = ,«B — Z<4‘

This is the explanation of the tetragonal splitting being much 
more distinct19 in trans-complexes, while it only gives broadening 
of the bands in the cis-complexes. Here the splitting is (— 1 ) 
time the splitting of mono-substituted complexes 3/ A-aB, which 
have /q— /¿3 = /zA— /iB, i. e. the splitting is inverted.

In applying these rides to observed spectra it is necessary to 
consider several facts. First, chelate ligands are treated as com
posed of the individual coordinating links. Especially sym
metrical chelates such as ethylenediamine or oxalate have AA 
function. Secondly, when the pure .1/4 6 and MB6 complexes have 
nearly the same spectra, the mixed complexes A/AnBc_n will 
show very small changes (formally, because — /<A ~ 0). 
These cases can be found from the spectrochemical series first 
developed by Fajans2'’ and later extended by Tsuchida23:

< Br~ < Cl~ < Oil ~ < RC()(r < NO^~ < F~ < H2O |
< SC'A << \H3 < en < NO2 < o-phen < dip « CA . |

(38)

Phe anions find quite fixed positions between the neutral mole
cules in this series. Thirdly, the effects of making a purely cubic 
complex 4/A6 less symmetrical by substitution to MA5B, .1/A4B2 . . . 
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are different, according to the ground-state being only once de
generate in cubic symmetry (as in chromium (HI), nickel (11), 
diamagnetic cobalt (III) complexes, etc.) or it is several times 
degenerate (as in titanium (HI), cobalt (II), copper (II), etc.). 
In the former cases the tetragonal splitting of a band does not 
move its centre of gravity determined by the cubic contribution 
/q + iW2 + while the latter cases have a predominant hyp- 
sochromic influence of unsymmetrical substitution, because the 
ground-state is decreased in energy also by tetragonal fields. 
Generally spoken, the latter type of complex with several times 
degenerate ground-state in cubic symmetry can show phenomena 
such as the “pentammine effect’’ in copper (II) complexes.4 They 
have a tendency towards showing characteristic coordination 
numbers 2 and 4 in the sense of J. Bjerrum26, while the non- 
degencrate cubic ground-states give nearly constant consecutive 
equilibrium constants, corrected for statistical effects and steric 
interaction between the ligands.

The non-degenerate, purely cubic type is very promising for 
calculation of spectra of poly-nuclear species, so abundant in 
chromium (III) and cobalt (III) chemistry. C. E. Schäffer will 
elsewhere publish absorption spectra of these compounds. E. g. 
the brown cation2' [Co {(OH)2 Co (ATf3)4}3]+6 has exactly the 
spectrum predicted of a mixture of the mono-nuclear links, one 
part of the hypothetical [Co (O//)6[~3 (determined from eq. 38) 
and three parts of cis [Co (A7/3)4 (0H)2] + , with the strong 
electron transfer spectrum from 0/7 + Co 307/ - Co 2 
superposed in the near ultraviolet.

J-Electrons in Crystal Fields of Trigonal Symmetry.

The trigonal symmetry Z)3 is characterized by the three 3-dimen
sional vectors (E, 2 C3, 3 C2)28:

C (Pdi) = (1, 1, 1)

C(Pzl2) = (1, 1,- 1) 

c (Fja) = (2, — 1, 0).

(39)

For different values of L, the possible quantum numbers are:
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C(S) = (i,i,i) = c(Ai)

C(P) = (3, 0,-1) = C(7^2) + C(As)

c(D) = (5,- 1,1) = c(rAi)r¿c(r¿3)

C(F) = (7, 1,- 1) = C(/;11) + 2C(71l2) + 2C(/j3)

C (G) =(9,0,1)= 2 C ( A i) + F (A2) + 3 C ( A3)

C (77) = (11, —1,-1) = C(Ai) + 2C(A2) + 4C(As)

C (7) = (13,1, 1) = 3C(Ai) + 2C(A2) + 4C(As),

(40)

The multiplication table is:

Ai Ah rj2 7 J3
A2 7(12 As
As As As At 1 + A 2 -r Al 3

(71)

The crystal field of a trigonal bipyramid has this symmetry. If 
one of the three equal dipoles in the planar triangle is denoted 
by /Zj, and one of the two equal dipoles in the perpendicular 
axis through the centre of the triangle by //2, the energy of the 
three possible states of one (7-electron is:

It is seen that the relative position of these energy levels are 
highly dependent on the ratio B2/A and /q//i2. F°r th° limiting 
case /zx = 0, the three energies are equal to the similar limits 
in the tetragonal case for (= /ti), an<7 7/i, respectively.

For the special the B2 contributions vanish:
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(43)

Just as in the cubic symmetry, the sum of dipole moments in 
the plane is twice as large as the sum of dipole moments along 
the perpendicular axis in this particular case. While the other 
types of crystal field symmetry, treated in this paper, are re
presented in octahedral complexes, I he trigonal symmetry cor
responds to only live-coordinated complexes. These are of 
special interest as a probable intermediate configuration occurring 
in exchange reactions by dissociation of octahedral complexes 
involving \Yl mechanisms.29

Summary.

The group-theoretical derivation of the possible states in 
crystal fields of cubic, tetragonal, and rhombic symmetry is 
presented as operations with simple five-dimensional vectors. 
The problem of interaction between two states alone by going 
from weak to strong crystal fields is solved. The behaviour of 
one d-electron in the fields of different symmetry is discussed, 
fhe earlier calculations on d2-systems are used for comparison 
with the strong and weak tetragonal fields. The ground-state of 
diamagnetic nickel (II) complexes is found. In d3- and d4- 
systems, the splitting of states with maximum S is inverted, as 
compared with the corresponding d2- and dislates. 'fhe magnetically 
anomalous complexes of these configurations are discussed, and 
peculiarities in the tetragonal splitting pointed out. Cubic states 

of d5 with S = — are in some cases strongly interacting. Finally 

the relative magnetude of the tetragonal splitting in complexes 
with different distribution of ligands on the six octahedral places 
is found. Distinction is made between complexes with only once 
degenerate ground-slate in cubic symmetry (which show more 
regular evolution of spectra and equilibrium constants with 
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increasing number of a new ligand) as compared with complexes 
where this is not the case. These latter, which according to 
van Vleck cannot at all be stable in purely cubic symmetry, 
show higher wave-numbers of the mixed complexes as compared 
with the limiting complexes JM6 and MI36.
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A neutrino recoil spectrometer has been constructed. The motion of the recoils 
has been studied in crossed electric and magnetic fields. The particles have been 
detected by the charge they give off to the collector system.

First, the theory of the instrument is described; subsequently, details of its 
construction are given and, finally, results obtained in an investigation of A37 
are presented. These results are:

The neutrino momentum 812 ± 8 keV
pct. recoils of charge 1 26 ± 3
pct. recoils of charge 2 13 A 4
pct. recoils of charge 3 38 ± 4
pct. recoils of charge 4 18 ± 2
pct. recoils of charge 5 4 ± 1
pct. recoils of charge 6 1 ± 1
The average charge of the charged recoils 2.64 ¿ .08.
Momentum of the most energetic Auger electrons 162 4 Gauss cm.
pct. of decays leading to such electrons 65 5.
Average momentum of all electrons 69 1 Gauss cm.

In trod u etion.
eutrino recoil particles have in general energies of the order 
of a few electron volts. The most reliable investigations of 

such recoils can therefore be carried out with radioactive noble 
gases. In such experiments, no disturbing effects from source 
backing or molecular break-up appear.

Ordinarily, it is tried to measure neutrino recoils in instru
ments which are similar to conventional spectrometers. A radio
active noble gas, however, inevitably spreads out over the whole 
volume of the chamber. This introduces complications in the 
evaluation of the resolution curves for the instrument.

In the present article, an instrument is described which has 
very few similarities to conventional spectrometers. The purpose 
of this change is to obtain an instrument of sufficient simplicity 
so that it is feasible to carry through a complete mathematical 

1*  
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analysis of the factors determining intensity and motion of the 
particles.

We shall study the orbits of the recoils in homogeneous 
electric and magnetic fields produced inside the volume of a 
plane parallel condenser. Further, the motion of the particles 
will be investigated by measuring the charges they give oil' when 
they hit the plates of the condenser. The mathematical problem 
arising is then simply the question of whether a given particle 
produced in a given position, with a given charge to mass ratio 
and velocity, will hit a certain one of the condenser plates, or 
whether it will spiral out between the plates. We then choose 
such values of the fields which permit the separation of the 
effects from the different particles. The measuring procedure 
involves studying small variations in the currents when the fields 
are changed in such a manner that these changes can be inter
preted with respect to the kinematic parameters describing the 
particles.

With the present choice of the geometry of the instrument, 
it will be our task to measure currents from particles starting 
everywhere inside the condenser and with all directions of initial 
velocity. This obviously leads to many integrations, a fact which 
makes it evident that we are dealing with very poor geometry. 
At first sight, it might appear as if the worst possible geometry 
had been chosen; this suspicion can only be disproved by our 
results which have provided a body of information that so far 
had not been obtained by means of more conventional types of 
spectrometers.

In the following, we shall first enter into the theory of the 
instrument by solving the mathematical program formulated 
above. Then, the construction of the instrument is described and 
an analysis of some necessary measurements is given, which 
have been carried out in order to determine the behaviour of 
the instrument. Finally, the results obtained in an investigation 
of the recoils from Zi-capture of A37 are presented.
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Chapter 1. Theory of the Instrument.
1.1 Principle of the Instrument.

In principle, the chamber of the instrument consists of an 
evacuated space between two condenser plates (Fig. 1). An 
electric voltage V is applied across the condenser. A magnetic

I '

I i
Fig. 1. Principle of the instrument.

field II is introduced parallel to the plane of the condenser plates 
and a radioactive noble gas is introduced into the space between 
the plates. When the gas decays, charged particles are created 
uniformly throughout the space between the plates and with no 
preferred direction of emission relative to the orientation of the 
electric and magnetic fields. By ß-decay charged recoils appear. 
Furthermore, secondary effects, such as Auger transitions and 
influence of nuclear charge changes, give rise to secondary 
electrons. Thereby high charge values on the recoil atoms may 
be obtained. In the following, we therefore consider an initially 
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homogeneously distributed creation of recoil particles with the 
ionic charge spectrum nz and momentum distribution P(Mu) 
together with electrons of momentum distribution P(p). The 
number of recoils created per second inside the interval between 
x and x + dx (cf. Fig. 1), and with direction of emission inside 
the solid angle di) — (1/4 tt) sinOdOdqp with charge Zy and 
momentum between Mu and Mu + dMu, is consequently assumed 
to be given by

Nnz P(Mu) dMu (dx/2a) (1/4 %) sin 0 dO d(p, (1 ) 

where N is the total number of disintegrations per second, and 
2 a is the distance between the condenser plates (cf. Fig. 1). 
Similarly, the number of electrons created per second between 
X and X + dx, and with momentum between p and p + dp, and 
with the direction of emission inside the solid angle interval di), 
is given by

N (Zy) P(p) dp (dx/2a) (1/4 ti) sin 6 dO dtp, (2)

where is the average charge of the recoils. Since we start 
with neutral atoms, charge conservation tells us that in all 
electrons have to be accounted for. This number of electrons of 
course includes the decay electrons when we are dealing with a 

-decay. In the case of ß~-decay including e emission to a bound 
state, 7<-capture, and isomeric transitions, only neutral or posi
tively charged recoils appear. We shall restrict our considerations 
to such cases, although the theory of the instrument, with slight 
extensions, can also be applied to /?+-decay.

When charged particles move in crossed electric and magnetic 
fields, the orbits are determined essentially by the velocity and 
the charge to mass ratio. Thereby the different contributions 
to nz, P(Mu), and P(p) can be found by studying the motion of 
the particles at different values of the field strengths F — V/2a 
and H. As mentioned in the Introduction, the variations of the 
orbits are studied by following the variation of the numbers of 
particles hitting the plates of the condenser. This number can be 
examined in essentially two different ways. The number of 
particles has previously been measured by the tracer method1) and 
only electric fields have been applied. In the present investigation, 



Nr. 15 7

the particles are detected by the charge they give oil to the plates. 
In cases where the tracer method can be used, both neutral and 
charged recoils are detected and, furthermore, no contribution 
from the electrons has to be considered. Such cases appear when 
the radioactive noble gas has a radioactive daughter substance. 
When currents are measured, the electrons have also to be taken 
into account. The large difference between the charge to mass 
ratio for recoils and that for electrons is the most important 
factor used in distinguishing between the contribution from each 
of these types of particles. This difference causes great changes 
in the orbits of the light and heavy particles. The motion of the 
electrons is essentially determined by the magnetic fields, and the 
introduction of small electric fields causes only very small cor
rections. Conversely, for the recoils the electric fields are of 
greatest importance.

When currents are measured, neutral particles do not con
tribute. Thus, in the following, we have to interpret the number 
N as the number of decays leading to charged particles and our 
discussions refer to the charged decay products only. In formulas 
(1) and (2), we have therefore also assumed the following norm
alization condition

¿%=1- (3)
Zy = 1

For completeness, it should be mentioned that the momentum 
spectra are also assumed to be normalized in the following way :

\p(p)dp=l, (4)
Jo

fp(Mu)dMu=l. (5)
Jo

In order to illustrate the procedure of calculating the currents 
as functions of V and II, we begin with the very simple example 
which occurs when Mil = 0. Such calculations are very illu
strative of the procedure adopted in the following, and the 
results constitute an important limiting case for our later cal
culations which take into account the momentum of the particles.
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1.2 Particles Initially at Rest.

In order to facilitate the understanding of the instrument, 
we separate the two problems, charge distribution and momentum 
distribution and, in this section, discuss particles initially at rest. 
The equations of motion (cf. eq. 33, ref. 2) in the non-relativistic 
limit are

Mx = zyeF + (zye/c) Hÿ, (6)

= ~(Zye¡c) Hx, ( 7 )

Mz =0. (8)

With the conditions x(t = 0) = 0, we get the well-known 
cycloidal orbits of the motion

X — x0 — (Mc^FjzyeH2') [1 — cos (ZyeH/Mc) i], (9)

y — y0 = (McZF/ZyeH2) sin (zyeHjMc) t — (F/H)ct, (10) 

z — z0 = 0. (11)

The motion is a plane motion. Il should also be noted that, in 
(9)—(11), the kinematic parameters and the fields enter through 
the combinations

aBZy = (Mc2F/ZyeH2), (12)

I) = cF/H (13)
only.

Due to the periodicity of the orbits as regards the motion in 
the x-direction, we can obtain an experimental approach to an 
infinitely extended condenser system by introducing a central 
collector plate (cf. Figs. 8 and 9 of ref. 2) and the necessary 
guard rings or protection plates. The necessary sizes of the guard 
rings are discussed in ref. 2 for the cases of pure magnetic and 
electric fields. The guard ring discussion in crossed electric and 
magnetic fields proceeds essentially along the same lines and no 
further details will be given here. We may only mention that 
the instrument actually was constructed in such a way as to 
make it most suitable for our purposes.
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We can then proceed as if the condenser were infinitely 
extended in the y- and x-directions. In order to discuss the 
number of particles hitting the plates, it is therefore necessary to 
examine the magnitudes xmax and xmin only. Since, in this special 
case of the initial velocity u — 0, we have

æmin æo, (14)

we are even satisfied when we know the amplitude of the motion 
in the .x-direction, i. e.,

æmax — æmin = (2 Mc2F/z?eH2) = 2 uBz . (15)

From this information we find immediately the relative number 
of particles hitting the positive plate

7i(B) = 0. (16)

The number of particles moving out towards infinity is given by

9(B) =

„ xmax-xmin I
1 — 1 — B for B < 1

2 a 1 1

0 0 for B > 1
(17)

and the number of particles hitting the negative plate is given by

f(B)

max minX — X

2 a

1

B for B < 1

1 for B > 1 .
(18)

It is obvious that the functions h, g, and f fulfill the condition

h(B) + g(B) + f(B) = 1. (19)

The currents obtained for a certain charge distribuion n. are Ö Zy

correspondingly given by

(20)
z+ *(B)

out > = eN £ zvn - 9(B)
Z_ f(B)
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and, according to (19), the currents fulfill

h>Ut CxV( Zy y Z_|_ i--  . (21)

In order to get an idea of the accuracy which can be obtained 
in a determination of zzz from measured currents, imagine that 
i_ lias been measured for F equal to integral multiples of 
(eH2cz/Å/c2). Furthermore, let us denote the corresponding i_ 
values by ilt i2, i3, etc. From (20) it is then seen that the results 
must be interpreted as

ni + zz2 + n3 + n4 ..................... = i-JN

n4 + 2 n2 + 2 n3 + 2 n4 +............. = z2/AT
r?i + 2 n2 + 3 n3 + 3 n4 +............. = i3[N

z»i + 2 n2 + 3 zz3 + 4 n4 +............. = z4/AT

(22)

with the solutions 

I
I

(23)

which indicates that a considerable accuracy can be obtained. 
When, initially, the particles have a distribution in velocity, the 
set of equations analogous to (22) is more complicated and the 
accuracy with which zz, can be obtained is reduced.J zy

Although we have omitted the initial velocity zz in this dis
cussion, all the essential features of the method with respect to 
a study of the charge distribution of the recoils are given in this 
section. Especially when D » u, all the details of z+, z_, and zout 
are given by (20) to the second order in u/D.

Also the method which we apply for the calculation of h, 
g, and f as functions of Bz and zz is essentially similar to those 
outlined here. The important magnitudes are xmax and xmin, and 
we have to separate the number of particles into those hitting 
the positive plate, those hitting the negative plate, and those 
spiralling out.
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1.3 Particles with Finite Initial Velocity.

For the discussion of an infinitely extended condenser we 
first show that the motion is periodic in the rc-direction. This 
has been done in ref. 2. Also æmax and .r111111 have been found in 
ref. 2. For a discussion of the motion of the heavy particles we 
take the non-relativistic approximation eq. (40) of ref. 2

max , , ,, f œ a I
æmin— x0 = aB(l + Ay if |_1 + 2 Ay + A 2]/a) = < / (24)

[ —W I

where we have introduced

(25)

4 = "xMX (26)

4 = Uy/D. (27)

We shall also write

= lllx + llu + wz]/a/-O» (28)
where

u = (ux, iiy, uz) = (— u sin 0 sin <p, u sin 0 cos <p, u cos 0). (29)

The initial situation is illustrated in Fig. 1. We now introduce the 
relative numbers f, g, and h as in the preceding section. In order 
to calculate these numbers we introduce the dimensionless 
quantities W and a> defined in (24). It is seen that, after 
averaging over all directions in u, we find that the numbers f, 
g, and h are functions of A and B only, and that no other com
bination of the kinematic parameters and the fields appear in 
our formulas.

In Appendix A, which contains the results of some of the 
numerical calculations which have to be performed, a picture 
of the A—B plane is also given. In the present paper, we restrict 
ourselves to certain regions in this plane where the calculations 
are especially simple. The procedure will be to compare the 
quantities W and o) and the relative amplitude of the motion 

to 2.
L = W + co (30)
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Region I in the A—B plane. The simplest case for our cal
culations is obtained when

B > 1/(1 — A); A < 1; B < 3 + p'8

B < 4/A2; A < 1; B > 3 + j/8, 
(31)

independent of 6 and cp. This case has been treated in detail in 
ref. 2, together with the simple cases in which we have a pure 
magnetic field and in which we have a pure electric field. This 
calculation can also be obtained as a special case of the following 
more general considerations.

Region II in the A—B plane. Another relatively simple cal
culation occurs when

L < 2, i. e. B < 1/(1 + A), (32)

independent of 0 and cp. Both these cases are simple because we 
can freely integrate over the angles. There is, however, no reason 
for setting up special derivations for these regions; rather, we 
prefer to cover the entire region where

IV < 2,
i. e.

B < 1/(A — 1) for A > 2, I
(33)

B < 4/A2 for 0 < A < 2 . J

Physically, this means that the electric potential V is so large 
that particles starting out towards the positive plate from the 
immediate vicinity of the negative plate can never reach, or else 
can just touch, the positive plate. In the interval 0 < A < 2 in (33), 
the condition is, as seen, B < 4/A2 which leads to

V> Tn, (34)

where TR is the kinetic energy -Mu2 of the recoils. Under the 

restriction (33), we find that to and IV always roughly behave as 
indicated in Eig. 2 in the special case of A' = B = 1.

We have to divide our considerations into two parts according 
to the magnitude of <p. In each case, we can first estimate the 
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number of particles hitting the plate towards which it starts to 
move. Those which miss this plate have then to be separated 
into those that hit the other plate and those that spiral out, as 
shown in Fig. 2.

In order to integrate our expressions, we have of course to 
find the value of q> giving L = 2 ; if no such value exists, the

areas shown in the figures.

u - <p

Fig. 2. The curves W (cp), wipp'), and L(<p) are drawn for a fixed value of A' = 1 
and B = 1. The number of particles is divided into two parts according to whether 
they start out towards the negative plate, i.e., 0 < ç? < n, or whether they start 
out towards the positive plate n < cp < 2 n. In this way, it is easily seen that the 
contribution to f is given by - (A4 + A2), the contribution to g is given by A3,

2 J
and the contribution to h is given by  (A4 + A5), where the A/’s are the hatched

limits of integration should be chosen as 0 or it. Thus, the limit 
of integration is

<P =

0 for B < 1/(1 + A')

Arcc°s

n for B> 1/(1—A').

for 1/(1 + A') <B< 1/(1—A') (35)

Similarly, we have to find the value of <p giving co = 2. Cor
responding to (35), we find
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O for B < 1/(1 + A')

Arceos [2/BA'-[(4/BA'2) + lf’Jfor 1/(1 + A') < B < 1/(1 — A') 

ti for B > 1/(1 — A').
(36)

When no such angles do exist the proper angles to be inserted 
in the following integrals are given. This occurs in the two simple 
cases of regions I and II in the A—B plane.

The expressions for the sums of areas in Fig. 2 then lead to

,.71/2 
h(A, B) = \ (1/4 ti) (A4 + A5) sin OdO

♦’o
(*71/2  ( ] fTC 1

= \ ! \W dç?/4 % + (2 — co) —— \ (2 — L) c/99/4 n! sin OdO
• 0 I • 0 * '(p" 4 71 dgy J

, 71/2
= (B/4 n) \ {(1 + V) [4E(A-, W/2)-4E(*.  <p'/2) + 2 E(A-, <p"/2)J 

•’o
— 2 7t + <p" + (2/B) (9/ —- (p") + A' sin 9/} sin OdO

(38)

and
f(A, B) = 1 -g(A, B) — h(A, B), 

where
E(k, 99) = Ç [1 —k2 sin2 /]1|2c/Z,

Jo

k2 = 4A'/(1 + A')2.

(39)

(40)

(41)

When the particles have initially a distribution in velocity, the 
functions f, g, and h have to be integrated over this distribution. 
Such an integration is essentially an integration over A. When 
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there is a distribution in Zy one has to sum over this distribution.
Such a summation is a sum over different B values. Thus, the 
final expressions for the currents are given by

z_ 1
*+ ’ = 2? nz zy ( P(u) ’ h(A,B) - du-Ne

out

Zy *)

9(A, B) ,

which, under the proper conditions, leads to the approximations 
(50) and (51) of ref. 2 (cf. also eq. (44) of ref. 2 and the series 
expansion of the function S(A) in Appendix A).

If experimentally one is mainly interested in the velocity spec
trum, one obtains the best results by measuring along B = const, 
curves in the A—B plane. When the highest accuracy is desired 
in the charge distribution, it is convenient to measure along 
<A> = const, curves in the A—B plane. In the present experiments, 
we have confined ourselves to an approximation to the latter 
procedure by measuring along curves for constant V, i. e., along 
curves of the type

B = const/<A>2. (43)

Therefore most information is available about the charge dis
tribution and only <u> is obtained. So far nothing is known 
about the u distribution, which in the present experiments was 
considered to be a sharp line (cf. section 3.1).

1.4 An Example in which V<TR.

If no magnetic field is applied, the expression for z+ as a 
function of V can be found from eqs. (1) and (3) of ref. 2. We 
find

Tb/(6 z?eV) for eV > TR/zy

for e V < TR/zy.
(44)

In Fig. 3, this expression is plotted as a function of TR/eV for 
singly charged atoms (curve A).

If a small magnetic field is applied, we obtain in the region 
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eV > Tp/zy the approximation (44) of ref. 2, corresponding to the 
series expansion of 5(A) given in Appendix A. Furthermore, we 
know the asymptotic behaviour of z+ for V —> 0 which is given by 
the series expansion (17) of ref. 2. This expression we multiply 
by 1/2 in order to change to the variable H{ which we use here.

Fig. 3. Theoretical expectations for z'+ as a function of TRjeV in a pure electric field 
(curve A). If a small magnetic field is applied, small changes in the curve appear. 
The general appearance is, however, the same. The curve B corresponding to 
9.6 eV recoils with charge 2=1 and mass 37 amu. has been drawn by joining the 
known behaviour of the curve for TJeV < 1 to the known asymptotic behaviour 
for V -> 0. It should be noted that an upper limit to the deviation from curve A 
lies around (1/20) A2 (cf. eq. (88) of Appendix A). Particles of the same energy and 

mass, but of higher charge, will follow the dotted curve.

We shall be interested in the behaviour of 9.6 eV singly 
charged particles of mass ~ 37 amu. moving in a magnetic field 
2aH of 475 Gauss cm. In this case, the corrected curve for 
eV > Tr is shown in Fig. 3 curve B, together with the asymptotic 
behaviour for V -> 0. Instead of carrying out long calculations 
inside the region IV of Fig. 27, Appendix A, we are content with 
the approximate curve B in Fig. 3, which is drawn loosely to 
fit the known behaviour in both ends. Such a procedure is of 
course rather uncertain. We are interested in the deviation from 
the dotted continuation of the straight line valid for eV > TR and 
we need this deviation only to an accuracy of ~ 10 pct. Thus, 
the present rough approximation is justified.
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1.5. Motion of the Electrons.

The motion of the electrons is described in ref. 2. We are 
especially interested in the approximative expression (49) of ref. 
2. In our case, we are dealing with iV<zy> electrons. Thus, we get 

z±e = — Ne(Zy) [a (pec> /(8aHe) ± E < \Ve>/(‘2 aH2e) + • •]. (45)1

For the current zout we get, to the same approximation, i. e., to 
second order terms in F¡H,

Lute = —Ne<,zyy [1 — ^<pec>/(4tzHe)-------]. (46)

The expressions (45) and (46) are valid only when eHa > cp™ax.
Let us consider n electrons of definite momentum p and, as 

usually, created uniformly throughout our space between the in
finitely extended condenser plates. In a pure magnetic field, we 
get the total expression covering all H values by combining (13) 
and (16) of ref. 2 or using (50) of the present paper

eriTr <cp)/(8 «He) for Hea > cp

ie = < (ne/4){ [1 — (Hea/cp)2]1/2 (47)

+ (cp/Hea) Arcsin (Hea/cp)} for Hea < cp. |

This expression is illustrated as a function of pc¡Hea in Fig. 4, 
curve A.

In the following, we are dealing with electrons of kinetic 
energy Te = 2300 eV moving in an electric potential V = 30 eV. 
In order to calculate the exact curve in this case, we would have 
to apply formulae like those given in (37)—(39) with very high A 
values and even calculated in the region V of the A—B plane. 
For Hae > pc, we can apply (45) and, for //->(), we know the 
asymptotic behaviour from the expression (3) of ref. 2 or (44) of 
this paper. Curve B in Fig. 4 is drawn in this way by fitting to 
the known behaviour in both ends. This procedure is of course 
uncertain. If a larger number of electrons with smaller energy 
contributed to ze, the curve would continue along the dotted

1 In equation (49) of ref. 2, a factor x/2 is missing in the first term. Also the 
five last lines, including eq. (20) on page 13 of ref. 2, are wrong and should be omitted.

J)an. Mat.Fys.Medd. 29, no.15. 2
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Fig. 4. í as a function of pc/Hea for electrons moving in a pure magnetic field 
(curve A). If a small electric field is applied, changes like those leading to curve B 

are assumed to appear.

line B which is obtained from (45). The actual curve deviates 
from this line; we shall use this deviation to an accuracy of 8 pct. 
only. Therefore it is felt to be safe to apply curve B without 
carrying through long and laborious calculations.

1.6. Pressure Effects.

When the positive particles collide with residual gas mole
cules, their charge and momentum are changed, and the current 
measurements are thereby distorted. We shall not attempt to 
give a detailed calculation of the complex phenomena occurring 
in such cases. We only note that pressure effects must be 
eliminated by carrying out measurements at various pressures 
and extrapolating to zero pressure.

Order of magnitude estimates of pressure effects are to be 
found in ref. 2, p. 18 If. The considerations given there apply to 
singly charged particles. In the present investigation we are con
cerned with one more effect connected with pressures, which 
we will consider now. This effect occurs when a highly 
charged particle captures an electron, afterwards the fields act 
on it with reduced strength. A particle which otherwise would 
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have moved out towards infinity may thereby hit the collector 
plate. This effect is even increased by the possibility that the 
particle undergoes several such capture processes.

The pressure is expected to have influence when many 
particles spiral out. When H and V have such values that no 
particles can spiral out, the path of the recoils is very short and 
the pressure effect is a minimum. When particles spiral out, 
longer orbits occur and particles from the guard ring regions 
may have to pass the collecter region, thereby creating additional 
possibilities for such effects. This means that the guard ring 
regions should not be made too large. On the other hand, ap
plication of crossed electric and magnetic fields means that all 
particles obtain an average velocity in the y-direction given by

<py> = Fc/H. (48)

This velocity is larger than the recoil velocity by a factor 1 /A. 
Therefore the particles are very swiftly removed towards the 
walls of the chamber, and pressure effects are suppressed.

The worst case obviously occurs when F = 0. Then even 
standing orbits appear. Such particles are of course bound to 
collide. A good idea of the difficulties arising in this case may 
be provided by the following naive picture. Suppose that the 
main effect is charge changes and that the averaging mechanism 
of the instrument completely averages out the momentum changes. 
Suppose that this includes the gas molecules delivering the 
charge in question in such a way that the mathematics is defined 
as follows. Particles hitting a plate before a complete revolution 
in the motion in the x— y-plane are not affected by pressure. 
Particles which spiral up or down between the plates may capture 
an electron, but continue with the same momentum. The particle 
from which the electron is captured receives so little velocity from 
the capture process that it is sent out towards infinity with no 
possibility of hitting the collector.

Furthermore, we assume that the condenser is 2 X 1 cm long 
and that we are collecting in an infinitesimally thin region of 
the condenser only. Finally we also assume that the charge 
changes by one unit at a time. Then we get the following con
tributions to the currents to the plates:

2*
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(49)

«i

jzy (pc/HeaZy) = 1/2 — \ [(<
‘ • o

(50)

(51)

(53)

where

Å-

(54)

fold

are
the

for HeaZy < cp 

for HeaZy > cp

Zywhere is the mean free path for a

Zy to Zy — 1 is then given by

(cf. eqs. (13) and (16) of ref. 2). Eq. (49) gives the contribution 
from those particles which hit the collector before fulfilling one 
complete revolution. When the integrations in (50) are carried 
out we obtain (47) of the preceding section.

The contribution to the current from the particles changing 
charge from

contributions from additional charge changes 
by calculations similar to those involved in 
of a successive radioactive decay. All integrals in
contain expressions of the following kind only:

I Arcsin [HeZyjpc]
I ^/2

A
CZ — Q.
—ö— U —e2 a v

and a, = 1/Â. ,*7 ■ Zy ’
charged ion.

Further 
determined 
description 
volved will

(55)
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The integral (56) can be expressed in terms of known functions 
(exponential integrals). The functions have been tabulated as 
functions of 0z^ and a1, however, in the present rough treatment 
the deviations from (50) can be neglected. Thus, the resultant 
current is still of the form (49), but more complicated expressions 
are entering (instead of the factors nz ).

1 The authors are indebted to civ.ing. K. O. Nielsen and fil. lie. G. Ehrling 
for tabulating the functions (55) and (56) on the electronic computor Besk in 
Stockholm, Sweden.

It is therefore to be expected, at least at noi too high pressures, 
that the main characteristics of (49) appear, although the inter
pretation of the magnitude of the different charge components is 
more doubtful. Then only the possibility of determining the 
momentum of the recoils from the shape of (49) remains. (Cf. 
Fig. 7 of ref. 2).

One of the above conditions seems not to be fulfilled ex
perimentally, namely, the condition that the molecules from which 
the charges are taken spiral out; however, it is likely that a 
diffusion of these ions occurs, giving rise to a constant positive 
current. This current is not affected by the magnetic field when 
Ilea > pc.

The only safe procedure is certainly to carry out experiments 
at various pressures and to extrapolate to zero pressure.

Chapter 2. Construction of the Instrument.
2.1. The Magnet.

The instrument is shown in Fig. 5. Its main parts are: the 
magnet with its stabilized generator (A, 2V). The main vacuum 
chamber containing the collector system (not visible in Fig. 5), 
the electrical equipment for measuring small currents and for 
generating the potential V (B, C, F, J, R), the vacuum system
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Fig. 5. General view of the instrument. A. Magnet. B. Vacuum tube with wire 
connection from the central part of the collector plate to the condenser C2 and 
to the vibrating reed electrometer. C. Vacuum container for the condenser C2. 
D. Pirani gauge for Ca furnace 2. E. Crane. 7<\. Vibrating reed electrometer with 
preamplifier. F2. Main amplifier and power supply for vibrating reed electrometer. 
G. Penning gauge. II. Forevacuum Pirani. /. Ice container for thermoelement. 
Jp Compensation instrument 7’2. J2. Galvanometer belonging to Jv J3. Galvano
meter scale and lamp belonging to K. Liquid air trap. L. McLeod gauge. 
M. Galvanometer for thermoelement reading. .V. Current adjuster for magnetic 
field. O. Water relais with alarm bell. 7J. Diffusion pump. Q. Mechanical pump.

R. Resistances and voltmeter giving P2 and 734.
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and devices for keeping the pressure down without actual pumping 
(not visible in Fig. 5).

The magnet was constructed by T. B. Thriges factories, 
Odense, Denmark. The other parts of the equipment were built 
at this institute.

The magnet is shown in Fig. 6. The iron surrounds a cylin
drical gap, which contains the coils with their water cooling and

------------------------------------------------------------------------- 1

Fig. 6. General diagram of the magnet with coils, water cooling etc.

insulation system. Ä small cylindrical air gap, 13 cm in diameter 
and 24 cm long, is left. This air gap constitutes the essential space 
into which the main vacuum system is introduced. The coils are 
made of 20 times 1 mm2 Hat copper wires insulated with plastic 
materials. 10 such flat coils are placed above each other, and 
between every second coil a water cooled plate is introduced. 
The magnet is very compact, which involves some difficulties when 
the main instrument is to be inserted. The main advantage of 
this construction is the relative cheapness of the magnet. Vacuum 
and electric and mechanical connections are made through 
narrow channels in the lid and bottom of the magnet and in 
one of the cooling plates.

The magnet is fed from a DC generator, which is stabilized 
in the standard manner applied in this institute3). The homo
geneity of the field is measured by moving small test coils up 
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and down and in the radial direction inside the air gap. The 
largest inhomogeneities appear around the narrow channels 
leading into the air gap through the bottom and lid of the magnet. 
These inhomogeneities do not extend far enough to be of any 
significance for the main instrument, which, due to the thickness 
of the vacuum chamber, first begins at about 2 cm from these 
channels. Apart from these inhomogeneities, slight inhomogeneities 
of up to 1 pct. appear, making the field slightly weaker in the 
central plane of the equipment. This is not very satisfactory and 
it will be seen later that these field inhomogeneities in fact are 
responsible for the most important source of systematic errors 
in the measurements.

The linearity of the magnetic field with the input current was 
investigated by means of a magnetic weight introduced in the air 
gap and with the possibility of balancing through the air gap 
between the uppermost coil and flic iron lid. The investigation 
has shown that the field varies linearly with the current to within 
.1 pct. throughout the whole region applied here (up to 13000 
Gauss). The remnant was found to be negligible.

The absolute calibration of the field was taken from a cal
culation on the magnetic and electric circuits. In fact, this cali
bration is not necessary, since it can be provided by means of 
the results (61a) and (77). An error in the calibration would 
affect these two results in opposite directions.

In the following, the magnetic field was always taken from 
the measurements of the current in the magnet and calibrated 
in the above mentioned manner.

The water cooling of the magnet was not adequate for keeping 
the temperature constant in the air gap. This is another important 
source of possible systematic errors in the measurements, although 
it has been largely reduced by inserting an additional water 
cooled shield between the coils and the vacuum chamber.

2.2. The Collector System.

The collector system is shown in Fig. 7. The whole system 
is placed in the magnetic field generated in the magnet Fig. 6. 
A water cooled brass shield C is introduced between the coils
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and the main instrument. This meant an essential improvement 
of the instrument. However, even with this extra cooling, the 
temperature varies when the field operates for a long lime. If, 
say, 70 amps are sent through the coils, the temperature in
creases by about 35° C during 30 minutes when no water is sent 
through the channels of the shield, and by about 3° C when the 

Fig. 7. The vacuum chamber and collector system. I and III. The outer electrodes. 
II. The inner electrode. A. The collector. B. The guard ring. C. Water cooled 
shield. V. Vacuum chamber. D. Pivots. E. Phosphor bronze spring. F. Micrometer 
screw. G. Glass insulator. H. Brass stopper. I. Polystyrene foil. J. Perspex in
sulator. K. Textolite insulators. L. Brass screws. M. Connection to vibrating reed.

TV. Guard ring tube. 0. Perspex insulator.

shield is cooled. The temperature is measured in the space be
tween the shield and the vacuum chamber TV.

The collector system is contained in the vacuum chamber TV. 
W rests on the two pivots D and is kept in position by the phosphor 
bronze spring E and the micrometer screw F. When the system 
is put together, vacuum established and A37 introduced, the 
entire system can be tilted so that the collector plates can be 
adjusted parallel to the lines of force of the magnetic field (cf. 
section 2.6).

The collector system consists of a double condenser. Duplicity 
is only introduced for convenience. The two outer condenser 
plates I and II are short circuited, and the central condenser 
plate II is supported by .700 cm brass stoppers H and .004 cm 
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polystyrene foils I, which provide the insulation between I and HI 
and the guard ring part B of II. The plates I and III rest on 
perspex insulators J. The whole system is screwed together so 
that no displacement occurs when the instrument is tilled.

The central part A of plate II is the essential collector. It is 
carefully insulated from B. Insulation is provided by the three 
textolite insulators K, which are pressed into position so that A 
and are perfectly plane. The insulators are pressed in position 
by the brass screws L. A is connected to the vibrating reed elec
trometer by means of the thin wire Af, which is brought out 
through a thin hole drilled in B and completely tilled with in
sulating material, so that A37 cannot penetrate into this space and 
cause false currents. Finally, the insulator is vacuum sealed to 
the wire and to the thin brass tube Ar, which provides the electric 
guard ring for the collector connection. 2V is silver soldered to B 
and brought out through the insulator 0, thus giving the pos
sibility for electric contact to B. All electric connections inside the 
evacuated parts are soldered. This is a very important precaution in 
order to avoid false potentials due to accidental disconnections 
when vacuum is established. The inside of the vacuum chamber 
and of I, II and III is covered with a thin layer of gold in order 
to minimize effects from surface potentials. Care was taken to 
make the insulators (as seen from the inside of the system) as 
small as possible. Such insulators may be charged by the cur
rents and thereby distort the electric field. The dimensions of 
the instrument are chosen so as to fulfill the conditions (21), 
(22), and (23) of ref. 2 in order that the central part A of the 
collector represents part of an infinitely extended condenser in 
all experiments discussed here. At the same time, sufficient 
homogeneity of the electric field is obtained.

The outer part B of the central plate acts as a guard ring 
and is kept at the same potential as the collector A. Nevertheless, 
contact potentials may cause small currents over the many in
sulators between A and B. A special investigation was carried 
out with the aim of finding insulators which are both rigid enough 
mechanically and sufficiently well insulated even when they are 
strongly irradiated with X-rays. This investigation is described 
in Appendix C. Textolite was found to fulfill these conditions.
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2.3. The Electrical System.

The wire M of Fig. 7 is connected to a vibrating reed elec
trometer in the manner shown in Fig. 8. The connection is 
carried out in a metal vacuum container. Metal was chosen

from the collector A of Fig. 7. P. Metal bellows. Q. Flange. R. Rod fixed to the 
central plate of C2. S. Central electrode of C2. T. Magnetic switch.

because the collector system has to be shielded from disturbing 
electric potentials. The vacuum is necessary in order to ensure 
that this system should not act as an ionization chamber for 
cosmic rays or radioactive impurities. The vibrating reed is used 
as a zero indicator only, and the charge arriving at M from the 
collector is neutralized by charging the additional condenser C2 
from a compensation instrument.

Again all electric 'contacts inside vacuum are soldered, and 
current is drawn through all connections in order to ensure 
contact. The membrane P provides the flexibility needed in order 
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that the main vacuum chamber can be tilted without disturbing 
the secondary vacuum in the system shown in Fig. 8. The flange Q 
is only introduced in order to enable us to pul the instrument 
together and to solder 3/ to the fixed rod R which leads to the 
inner electrode 5 of C2. The additional condenser C2 rests with 
its inner electrode in the socket of the vibrating reed electrometer. 
The magnetically operated switch T makes it possible to set the 
system free and ready for measurement.

Fig. 9 shows the circuit diagram with the same notation as

used previously. The outer condenser plates are connected to a 
battery of dry cells. The potentiometer P 1 generates the potential 
Vj on A and B.

is chosen such that it equals the contact potential between 
the reed and anvil in the vibrating reed electrometer. Thereby 
the reed indicates zero potential. When the short circuit T is 
removed the inner system is free and completely insulated from 
all other conductors in the instrument. P2 gives the compensation 
potential 0—1 volt on C2 which is used to keep the reed showing 
zero when ions are collected on the collector. The time t it takes 
to charge C2 to, say, 1 volt is a measure of the currents i+ or z_ 
given in Chapter 1. P3 gives the possibility of generating a variable 
potential V3 between certain parts of the instrument. V3 can be 
adjusted for long time drift by means of the variable resistance R. 
P4 divides V3 so that a certain portion of F3 is connected to C2 
and the remainder, V2, is the essential part of the potential V 
between the outer and inner plates of the collector system. 7^4
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is adjusted so that a variation of V3 causes no indication on the 
reed. The principle of this procedure is illustrated in Fig. 10. 
When V is changed, say, from 0 to W volts, a voltage change 
in the vibrating reed is measured. This voltage change A V is
given by

A V W—4-------
R^R^Ci (57)

ZCi is the sum of various capacitances between the insulated 
system and all other parts of the instrument.

Fig. 10. Indication on vibrating reed for a 3 volt variation of V3 as a function 
of the resistance R. Basic circuit diagram is shown.

In Fig. 10 are also given the measured results for Zl V as a 
function of R = Rr + A when V is varied from 0 to 3 volts, 
which is far more than any drift during a single experiment. It 
is seen how complete compensation can be obtained by putting 
R = 5107 ohms. Now measurements can be carried out at a 
potential V = — V2 across C 1.

The condenser C2 is about 60 cm. Therefore, a current of 
10”14 amp will cause a charging to 0.1 volt in approximately 
300 sec. Such an interval of time can be measured by means 
of a stopwatch with an accuracy of 0.2 sec. Thus it is possible to 
measure currents of this order with an accuracy of 0.1 °/0. The 
zero current of the entire instrument, when radioactive Ca is 
placed in the Ca furnace 2 described in 2.5, is < 5 -10”18 amp 
and the instrument noise is < 10” 4 volts which, together with 
the uncertainty in the time measurement, still permits a 0.1 
accuracy.
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2.4. The Potential V,.h

When electrons move in our crossed electric and magnetic 
fields we can, as mentioned in 1.5, practically neglect the in
fluence of the electric field. An electron will thus essentially 
move in helical orbits. If the electron is created at a point with 
positive potential, it will not be able to spiral out towards the

Fig. 11. The figure shows z_ as a function of Vh for V = 34 volts and II = 1450
Gauss. Curve A corresponds to a pressure of 2-10-4 mm llg, curve II corresponds 

to 3.6-10 mm Hg.

lid and bottom of the chamber, unless the lid and bottom are 
placed at a positive potential of approximately the same value 
as, or a higher value than, that at the point where the electron 
is created. The effect is similar to that which is utilized in the 
Penning manometer.

This situation occurs especially when the collector is at zero 
potential and the plates 1 and III are at positive potentials. In 
this case, the electrons will travel up and down in the instrument 
until they change momentum by collisions with molecules of the 
residual gas. Thereby the electrons may ionize the molecules 
giving a new charge which is collected and which falsifies the 
current measurement.
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The effect can easily be removed by applying the potential 
Vh as shown in Fig. 9. In Fig. 11 the effect of Vh is illustrated. 
A37 has been enclosed in the vacuum system in the manner 
described in the following, a magnetic field and an electric 
field of V = 34 volts are applied. The current observed is then 
described as a function of Vh. It is seen that too high positive 
currents are obtained until Vh > 34 volts, i. e., until no electrons 
are created at higher potential than the potential at the bottom 
and lid of the vacuum chamber. The curves in Fig. 11 refer to 
two different values of the pressure, and it is seen that the effect 
is more pronounced for higher pressures. This is of course a 
support for the whole picture of the effect.

As a consequence of the present results, Vh was always kept 
slightly above V in the following experiments. The procedure is 
not quite satisfactory and, in future instruments of this type, it 
will be necessary to deal with the fields at the limits of the col
lector system in a more satisfactory way. Either one field should 
be applied so as to remove the heavy particles and, as here, 
the lid and bottom of the instrument kept at a potential Vh, or 
else a more continuous termination of the electric field should 
be provided.

2.5. The Vacuum System.

The auxiliary vacuum system is illustrated in Fig. 12. The 
tube leading from the bottom of the main chamber in Fig. 7 is 
through a joint U connected to the quartz tube Y containing 
commercial Ca. The Ca is heated continuously by a stove which 
is not shown in the figure. In this way, Ca acts as a getter, and 
the pressure can be kept down in the main instrument for rather 
long periods of time. A stopcock V leads to a closed system con
sisting of a stainless steel tube X, which contains 5 g of Ca ir
radiated for four weeks in the Harwell pile. This Ca contains 
some millicuries of A37. The closed system also contains a Pirani 
gauge W. Another stopcock Æ leads to the Penning gauge. 0 leads 
to the vacuum pumps, consisting of two oil diffusion pumps and 
a mechanical pump. Å leads directly to a liquid air trap and 
further to a McLeod manometer. The liquid air trap prevents 
Hg vapour from spreading out in the instrument.
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When A" is heated, A37 is liberated and, thus, A37 can be 
introduced into the system. During heating, the pressure rises 
to very high values inside the closed system defined by V. How
ever, as heating goes on, the pressure again is reduced and, 
when heating is interrupted, the pressure is further diminished.

When the main system has been pumped down for some 
time, and the Ca furnace T has been heated continuously, it is

Fig. 12. The auxiliary vacuum chamber. U. Joint. V. Stopcock. W. Pirani gauge 
belonging to calcium furnace 2. X. Calcium furnace 2. Y. Calcium furnace 1.

Z. Penning manometer. Æ. Stopcock. 0. Stopcock. A. Stopcock.

possible to keep the pressure down at 10~6 mm Hg, as read on 
the Penning gauge, for many days with the stopcock 0 to the 
pump closed. Part of this is due, however, to the fact that the 
Penning acts as a pump. Gas molecules are ionized and bom
barded into the pole pieces of the Penning magnet. This pumping 
action also diminishes the pressure of Argon, which is not taken 
by the Ca furnace. This is rather unfortunate since it means that 
also A37 is eaten by the Penning. Such an effect is clearly pro
hibitive for the entire experiment. That this is so was verified 
by a direct test using A37 as a tracer for A. The current z_ in 
the instrument was again measured for given values of V and II 
and followed through half an hour. The current was constant to 
within the above mentioned uncertainty. Then, as illustrated in 
Fig. 13, at the time t = 0, the stopcock Æ was opened and the 
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Penning was permitted to operate. It is seen that the current i_ 
decreases within an hour to a fraction of the value it had before 
the Penning was allowed to eat A. The accuracy in the points 
after t = 0 is not too high because shorter time intervals than 
300 sec were used for the measurements. Also, the operation 
conditions are more unstable in this case. The first very sharp

Fig. 13. The Penning manometer eats A. The figure shows the current i as a func
tion of time t. At t = 0 the Penning is permitted to eat A.

drop is due to the fact that the Penning volume did not contain 
A37 before t — 0. It is of course impossible in this way to explain 
the continued decrease.

It was therefore necessary to use the McLeod only for the 
measurements of the pressure during the investigations. We could 
not obtain the very low pressures indicated above, but we had 
to work with the pressures which the Ca furnace alone could 
keep. It turned out that, with the present vacuum system, we 
had a practically constant increase of roughly 3—4 10“5 mm Hg 
per day when the Penning was not operating. This is presumably 
due to A leaking into the instrument. The pressure curve as a 
function of time is shown in Fig. 14. At t = 0, a portion of A37

Dan.Mat.I'ys.Medd. 29, no.15. 3 
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was introduced, and the pressure was rather high for the first 
few minutes. This is due to gas given oil' by the irradiated Ca 
when the furnace X is heated as mentioned above. After heating, 
the pressure in the closed system X did not go entirely down to 
zero. Part of this gas was, however, neutralized by the Ca fur
nace T, and within half an hour the pressure decreased to

Fig. 14. Pressure in the instrument as a function of time after a portion of radio
active Argon has been introduced at i = 0.

a value slightly below 10—5 mm Hg, where it stayed for some 
hours. Thereafter, the pressure increased in the manner de
scribed above.

Two millicuries of A37 lead to a pressure of about 10—6 mm 
Hg in our approximately 2 liter vacuum system.

2.6. Tilting of the Instrument.

When the plane of the condenser is not parallel to the magnetic 
field, secondary electrons from the lid and bottom of the in
strument spiral up and hit the collector. Thereby the currents to 
the collector are reduced. One can therefore directly use the 
current z_ as a function of the micrometer reading (Fig. 1 5) in 
order to get the best possible alignment of the instrument. In 
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the case illustrated in Fig. 15, the instrument has been inserted 
in the magnet in such a way that the tilting could not be carried 
further to the right because no more space was available in the 
two narrow channels of the pole pieces. In other investigations, 
the curve has been followed further to the right. The curve is 
thereby shown to be symmetric. If the held were homogeneous 
and the plates exactly plane, an effect proportional to the numer-

Fig. 15. Tilting of the instrument. The figure shows z_ as a function of the micro
meter reading for V = 60 volts. = 70 volts, H = 4280 Gauss, and at a pres
sure of 10 ° mm Hg. The currents are measured in the units used in the following, 
where i  for V = 30 volts, H = 2500 Gauss has been put = 1. The current ZÍ z 
is the deviation from the asymptotic behaviour. 1 unit micrometer reading 

corresponds to a = 25'.

ical value of the lilting angle a would be expected, i. e., the 
deviation from the asymptotic behaviour of the curve is a direct 
measure of the influence of the inhomogeneities in the field and 
of the lack of planeness of the plates.

In our case, the field inhomogeneities are, as mentioned, so 
that the field is slightly weaker in the center of the air gap than 
at the position where the bottom and the lid of the vacuum 
chamber are placed. The effect is equivalent to the plates being 
curved away at the ends from the actual space utilized in the 
instrument. Thus, no shadow effect will occur w hen the chamber 
is tilted, and a simple argument shows that the asymptotes in 
Fig. 15 will intersect in the true point representing w0 and that 

3*  
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current which would have been obtained if no field inhomo
geneities existed. The current A i thus represents the correction 
which must be applied on i in order to get the true z value when 
i is measured in the most favourable position of the instrument. 
Curves like that given in Fig. 15 were obtained for various values 
of H and V, but no variation could be found with certainty in 
Ai; hence, we have chosen to correct all our later measurements 
with the mean value observed, Ai = .015 in the standard units 
mentioned in the text to Fig. 15. This value is of course somewhat 
uncertain and must be taken with all due reservation. However, 
due to its apparent constancy, we need not be much worried 
when discussing small variations in H and V; furthermore, we 
have obtained an independent check on A i in the arguments 
given in section 3.4.

2.7. Temperature Constancy.

Obviously, it is important to keep the temperature constant 
during the investigations, simply because the concentration of 
A37 is strongly affected if different parts of the equipment have 
differently varying temperatures.

This effect is illustrated in Fig. 16. The instrument was left 
for some days without cooling water so that room temperature 
was reached. When measurements were started (in the following 
referred to as the time t = 0), V — 30 volts and H = 2500 
Gauss was applied and cooling water turned on; the curve shown 
in Fig. 16 was obtained, giving our standard reference current as 
a function of time measured in units 10-16 amp. The variation 
in temperature in the space between the water cooled shield 
and the vacuum chamber is also given in Fig. 16.

During the first few minutes after t = 0, the outer parts of 
the vacuum chamber are cooled down, whereas the collector 
system and the space between them stays at room temperature. 
Thereby the concentration of A37 between the plates is reduced, 
and the A37 concentrates in the outer parts of the vacuum chamber, 
where it is augmented until somewhat later, when the collector 
becomes cold and the relative concentration is restored. The final 
concentration is then slightly larger than the concentration at 
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t = O because the vacuum chamber now has a lower tempera
ture relative to the Ca furnace, McLeod etc.

The uncertainties indicated in the current measurements in 
Fig. 16 are 2-10— 7 amp, representing 0.1 pct of z_.

In the experiments described in the following chapter, the 
measurements have been performed by referring to the present

Fig. 16. The figure shows i_ as a function of time measured under our standard 
reference conditions V = 30 volts and H = 2500 Gauss. Also the temperature 
of the instrument is shown as measured in the space between the cooling shield C 

and the main chamber W (see Fig. 7).

values of V and H, putting the current obtained here = 1. The 
data have been taken by measuring the current for this value 
of V, H, for a new value of V, H, and then again for the present 
value of V, H and the result has been expressed as the ratio of 
the second measurement to the average of the first and last 
measurement. Occasionally, other reference values of V, H have 
been chosen, but then the new and the old reference points have 
been checked relative to each other before and after the set of 
measurements in question. Also each measurement has been 
repeated, and the results given later represent the average of the 
repeated measurements.

In this way, it is possible to eliminate the major effect of 
temperature changes and, simultaneously, the effects from the 
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decay of A37 leading to a decrease in concentration are elimin
ated.

It should be noted that the temperature changes observed in 
the present experiment are considerably larger than those en
countered when the instrument is already cooled down. (Of. 
section 2.2).

2.8. Statistics.

The currents observed vary from 0 to approximately 2-IO-13 
amp. The latter current corresponds roughly to 1.2-IO6 elec
tronic charges per sec., or to approximately 4 - IO5 individual 
events per sec., if we put the average charge of the recoils to 
around 3 elementary charges (cf. section 3.4). In order to get a 0.1 
pct accuracy in the current measurements, it is necessary to measure 
for about 200 sec. Thus, the total number of events amounts to 
about 108, giving statistical fluctuations of about 104. For the 
small currents, the absolute magnitude of the statistical fluc
tuations is of course smaller.

This is more than satisfactory for the present investigation 
but, on the other hand, it shows that an improvement of more 
than a factor 5 in the accuracy cannot be gained, unless much 
more time is devoted to each measurement, regardless of any 
other possible improvement in measuring technique.

2.9. Dielectric Polarization.

When the voltage is suddenly changed, the residual com
ponents of the dielectric polarization causes small errors in the 
currents. The effect can be measured when no radioactivity is 
present by following the charging up of the collector system due 
to binding of charges in the two condenser systems Cl and C2. 
The effect is similar to that illustrated in Appendix C, but much 
smaller. The effect takes place in what little can be seen of the 
insulators inside the entire system and probably also in oxide 
layers on the surfaces of the condensers.

The essential effect is found to last less than 10 minutes. 
Consequently, all measurements involving changes in V were 
carried out after waiting approximately 10 minutes before 
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starting. Fortunately, this effect does not coincide with the demand 
of varying the magnetic field and thereby changing the tem
perature of the instrument, because all curves for varying V are 
obtained at fixed values of H.

'flic existence of a heating effect accompanying H changes, 
and of a dielectric effect accompanying V changes, is the reason 
why the measurements were carried out at constant H or at 
constant V, as shown in the following, instead of measuring at 
constant B and at constant A, as mentioned in section 1.3.

In future constructions of instruments of the present type 
such effects should of course be avoided.

Chapter 3. Results with A37.
3.1. The Decay of Æ7.

A37 is reported to decay into CP7 by 92 percent /i-capture and 
8 pct L-capture and with a half life of 34d4). Primarily, elec
trically neutral recoil atoms are formed. However, successive 
Auger effects and the charge change of the nucleus from Z = 18 
to Z = 17 cause a considerable ionization within a very short 
time (~ 10—10 sec) after the decay. The CP7 (p, n) A37 threshold 
gives that 817 ± 4 keV is available for the Æ-capture. Of this, 
approximately 3 keV is spent in excitation of the electronic core 
of CP7.

The recoil velocity distribution is primarily a sharp line 
originating from the practically monoenergetic neutrino emission, 
but is smeared out by ~ 6 per cent due to the recoil from the 
Auger effect and by a similar amount due to the Brownian 
motion at s. t. p.

This spread will only cause a~ 2 keV difference between 
c<p2>1/2 and <pc)>, the magnitudes with which we are mainly 
concerned here. We shall therefore neglect the spread in all our 
expressions and apply the sharp line formulas only. In these 
formulas we will insert everywhere instead of u. Actu
ally, as mentioned in 1.4, the velocity distribution could in 
principle be found by the present method, especially if measure
ments were made at suitable A and B values. Due to the effects
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mentioned in the preceding sections, it is best, however, that 
we confine ourselves to the charge distribution and to a measure
ment of

3.2. The Currents as Functions of Medium H Values.

When a potential V > TR is applied across the condenser, 
the contribution to i_ or i+ from the recoils is a constant for

Fig. 17. Curve A: z_ as a function of 1 ¡H for V = 60 volts, extrapolated to zero 
pressure, but without correction for Ai. Curve B: i , as a function of 1/H for
V = 30 volts, extrapolated to zero pressure, but without correction for Ai. For 
curves A and B the ordinate is to the left. Curve C: z_ as a function of 1/H for
V = 60 volts and at a pressure of 10—b mm Hg, and without correction for Ai.

For this curve the ordinate is to the right.

low H values (cf. eqs. (50) and (51) of ref. 2). The electrons, 
however, are collected according to (45) if H is not too small, 
i. e., to the first approximation we obtain for medium magnetic 
field currents of the form

i±=A — B/H. (58)

When i is plotted as a function of 1/H we should therefore observe 
a straight line. The results obtained are shown in Fig. 17 for 
V — 60, 30, and —60 volts. For the first two curves, a set of 
experiments has been performed at various pressures ranging 
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from 0.9-ICT0 mm Hg and upwards, and an extrapolation to 
zero pressure has been made. This extrapolation procedure is 
illustrated in Fig. 18. The magnitude of the correction which 
must be applied to measurements obtained at 10“4 mm Hg is 
shown in Fig. 19 for V = 30 volt and as a function of H. The 
correction varies linearly with the pressure for sufficiently low 
pressure values; it is seen that, for measurements performed at

Fig. 18. Two pressure correction curves showing the maximum corrections needed 
in the present experiment. Both curves are obtained with V = 30 volts. Curve A 
corresponds to H = 700 Gauss. Curve B corresponds to H = 6530 Gauss. The 

points represent observed currents without corrections.

1()—5 mm Hg, the corrections amount to 0.7 pct at most. Fig. 19 
is an illustration of the effects discussed in 1.6. At V = 2500 
Gauss, the positive particles begin to miss the negative plate and 
spiral out. Thereby the current is reduced and bends away from 
the straight line, as shown in Fig. 17. At the same time, a change 
in the behaviour of the pressure correction is observed, and this 
change clearly shows that pressure effects become more serious 
when the particles start spiralling.

Curve C in Fig. 17 is obtained at a pressure of 10-5 mm Hg. 
At this pressure, the pressure correction barely affects the straight 
line part of the curve. This curve bends upwards at approx
imately the same point where the curve A bends downwards, 
illustrating that particles missing the negative plate may some
times hit the positive plate. The points where the deviation from
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the straight line shape of the curves begins varies with V according 
to (42) of ref. 2.

F_Hu\
ezy(2aH)2\ F c) = BZy(l-A) = 1, (59)

where we have to pul zy — Q in order to obtain agreement with 
the energy value for the neutrine energy, as mentioned in section 
3.1. This will be further illustrated in the following.

Fig. 19. The pressure correction to be applied to measurements carried out at
V = 30 volts and a pressure of 10~ 4 mm Hg. The correction is given as a function 

of II. '

From the curves in Fig. 17 it is apparent that the contribution 
from the electrons at higher values of H can be calculated as 
the difference between the end point value at 1/H = 0 for the 
straight line extrapolated to this point and its value at the H 
considered.

Furthermore, the slope of the curve can be used to give the 
average momentum of all lhe electrons. The result is

Ne(zy) <pe) 1.071 X (67 ± 1) Gauss cm, (60) 

where we have written the result as a product of two numbers, 
thereby anticipating later results. Also, we have not used an 
equality sign in (60) because small corrections have to be taken 
into account (cf. section 3.5).
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3.3. The Neutrino Momentum.

When H reaches a value corresponding to (59) for appropriate 
values of u and Zy, some recoil particles contributing to z'_ begin 
to miss the collector and either spiral out or add to the current i+. 
As mentioned in the preceding section, this is the reason for the

Fig. 20. Recoil contribution to i— for V = 60 volts and as a function of H. The 
full drawn curves represent calculated contributions corresponding to the data 

in (61).

sharp drop in z_ and the slight increase in i+ mentioned in con
nection with Fig. 17. In order further to investigate this effect 
we have measured z_ for V = 60 volts at higher values of H. 
The z_ values obtained have been corrected for the contribution 
from the electrons in the way mentioned in the preceding section. 
Also a contribution of .015 current units has been added in 
order to correct for the field inhomogeneity (cf. section 2.6). The 
results obtained in this way are illustrated in Fig. 20.

First, the data between H — 3400 Gauss and H = 4500 
Gauss have been used to determine the momentum of the recoils. 
From our approximate knowledge of J/zzc = 800 keV from older 
recoil measurements5) (cf. also section 3.6), or directly from the 
sequence of apparent humps in the curve in Fig. 20, it is possible 
to conclude that below H — 4500 Gauss only 4 or higher fold 
charged ions can miss the collector. Using the data in Appendix A, 
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we can thus calculate the contributions to the currents from 4,
5, 6, etc. charged ions with an assumed Muc value. Such cal
culations were carried out for a sequence of Muc values, and a 
least square fit was made of z?6, n5, n4 to each set of curves be
longing to a definite Muc value. The sum of the squares of the 
deviations was calculated and the experimental data were found 
to agree with

<Muc) = 812 ± 8 keV

Nn6 .004 zt .004

Nn5 .015 i .005

Nn4 .075 ± .008.

(61 a)

Proceeding with the set of curves for Muc = 812 keV, one finds 
from the data for H > 4500 Gauss

Nn3 = .155 ± .015 (61b)

N (1.973 n2 + 0.973 rq) = .203 ± .020. (62)

The result for the Muc determination is rather insensitive to the 
pressure correction. This is quite natural because it merely 
depends on whether or not particles can spiral out. In other 
words, it depends on a comparison of H at the point where, say, 
4 fold charged particles just begin to miss the collector with the 
value of H calculated from

Mc2F 
lH*a

1 . (63)

The deviation between these two H values is a direct measure 
of Muc.

Due to the large uncertainties in n4 and n5 it becomes very 
difficult to estimate n2 by going to still larger values of H. We 
shall therefore proceed in a different manner in order to determine 
77; and 77 2, namely, by finding V and Ar<Zy>.
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3.4. The Average Charge.

When z'+ and z_ are measured as functions of V inside the 
interval where no recoils spiral out, results as those shown in 
Fig. 21 are obtained.

When V> TR/Zy, the curve should follow the expression (50)

Fig. 21. z— (scale to the right) and z’+ (scale to the left) as functions of 1/V. The 
results represent directly measured currents at 10 ° mm Hg without correction 
for field inhomogeneities. Curve A is the expected curve if no singly charged resoils 

existed. H = 675 Gauss.

of ref. 2 (cf. also eqs. (85) and (88) of Appendix A). To the 
first approximation, we should thus expect

z* + — — C + D/V. (64)

Plotted as a function of 1/V, a straight line results, as observed 
in Fig. 21. According to our considerations, —C equals the con
tribution from the electrons at the magnetic field considered, 
i. e., at 675 Gauss. This contribution of course includes the cur
rent Ai due to field inhomogeneities. From Fig. 21 we obtain

— C = .136 ± .001 . (65)

From Fig. 17 one obtains, by adding z = —.014,

-C = .135 ± .001, (66)
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(67)

(68)

(69)

± .010

(71)

and independent of the above energy determination

or not 
is due

We have now all
The results are

have the
Also the

Ne<Zy> = 1.071 ± .001 ,

It is thus definitely shown that the singly charged ions 
correct energy corresponding to the neutrino emission, 
pressure extrapolation clearly excludes the above mentioned pos
sibility, as illustrated in Fig. 22. Note that<( z^y is determined from

in good agreement with (62).
It is natural to ask whether 

number of singly charged ions 
being ionized by either the electrons or 
recoil atoms. This question can be answered definitely by fol
lowing the curve in Fig. 21 down to low V values. According to 
the theory of the instrument, the curve should then proceed as 
shown by curve A if no singly charged atoms of energy greater 
than 4 eV existed, whereas the actual fit is obtained, according 
to section 1.4, with

which shows that all currents present have been accounted for. 
This supports the interpretation of the tilting curve given in 
section 2.6.

The slope of the curve gives Ne < TRy. Since Muc is known, 
AT can therefore be found. The result is

i. e., we obtain

where the main uncertainty comes from the uncertaintv in Muc. 
The data given in Fig. 21 and Fig. 17 also give Ne(z) which is 
found to be

— 2.64 i .05.

Nnx = .105

Nn2 = .051

the surprisingly large 
to residual gas atoms 
by collisions with the

! (70)

the data required in order to obtain and n2.
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Fig. 22. The calculated (z ) value as a function of pressure obtained by calculating 
from curves not corrected for pressure effects.

Fig. 23. The recoil contribution to <_ as a function of II for V = 30 volts.
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(50) and (51) of ref. 2 by inserting < TRy = 9.6 eV, implying that 
we are dealing with high energy ions. This figure gives the results 
for which are calculated in this way by interpreting curves 
like Fig. 17 and Fig. 21, obtained at various pressures.

The average charge does not vary drastically with pressure 
and the pressure effect consists mainly of a current to the negative 
plate of ionized gas molecules of low initial velocity.

Finally, the picture so obtained is checked in Fig. 23, which 
shows an z_ (H) curve for V = 30 volts extending into the region 
where also doubly and singly charged ions can miss the col
lector. The full-drawn curve represents (61) and (70).

The errors given in the different magnitudes derived in the 
present section are of course not independent of each other. 
Presumably the statistics of the data would permit narrowing the 
limits of errors. However, it is not felt that the sources of system
atic errors, especially the effects of the field inhomogeneities, 
justify a long and involved mathematical treatment of the material 
(cf. also Appendix B).

3.5. The Secondary Electrons.

Since Ne^Zy^) is now determined, we can immediately get the 
average momentum of the electrons from (60). The result is 67 
Gauss cm when interpreted directly. However, the small terms 
in (45) have to be taken into account and thereby we obtain

<pe> = 69 ± 1 Gauss cm. (73)

This value may seem surprisingly low when compared with the 
generally assumed knowledge about Auger probabilities, Auger 
energies, and also with the results for the A37 decay mentioned 
in section 3.1. From such considerations it seems natural to have 
~ 85 pct of the decays accompanied by 166 Gauss cm Auger 
electrons from the first Auger effect following /v-capture. The 
average momentum for the remainder of the electrons would 
accordingly be 16 Gauss cm, corresponding to about 23 eV, 
which is unreasonably small.

The solution to this anomaly is found by following the curves 
in Fig. 17 to higher values of 1/H. For V = 30 volts the result 
is shown in Fig. 24.
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Fig. 24. The same as Fig. 17, but extended to higher l/H values. Curve A is the 
expected continuation if no electrons of momentum larger than 80 Gauss cm 

existed. Curve B shows the measurements.

If no electrons of momentum larger than 80 Gauss existed, 
the points would have to follow the slightly curved line A. The 
curvature originates from the second term in (45). An analysis 
of the result according to the picture given in section 1.5 gives 
the following results:

Pxuger; = 162 ± 4 Gauss cm, (74)

corresponding to

^Auger, = 2320 ± 120 eV (75)

and that the intensity of these Auger transitions is

^Auger//V = 65 ± 5 pct. (76)

Correspondingly, the average momentum of the remaining 
electrons is 32 Gauss cm, corresponding to an energy of 90 eV, 
which is much more reasonable than the above value, since at 
least some L-M Auger electrons of energy about 200 eV have 
to appear1.

1 A more detailed analysis of the ionization phenomenon accompanying A37 
K-capture will be given by A. Winther.

Dan.Mat.Fys.Medd. 29, no. 15. 4
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3.6. Measurements in Pure Magnetic Fields.

When pure magnetic helds are applied, an especially large 
pressure correction is expected (cf. section 1.6).

The experimental results obtained in this case are illustrated

Fig. 25. The figure shows i (H) for V = 0. Curve A corresponds to 2-10 3 mm 
llg, curve B to 7-10— 4 mm /fg, curve C to 10—4 mm llg, and curve D represents 
the asymptotic behaviour expected from the results in the preceding sections.

The currents are given in arbitrary units.

in Fig. 25. Curves are given at various pressures. As expected, 
the pressure effect is considerably more drastic in these ex
periments than in the crossed field experiments.

Nevertheless, the points in the 10~4 mm Hg curve, where the 
deviation from the horizontal line occurs, give a good measure 
of the momentum of the recoils. The determination of Muc gives

Muc = 806 ± 8 keV,

in agreement with the results measured in crossed fields.

(77)
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This investigation was actually carried out before the ex
periments described so far had been performed. The result (77) 
therefore provided a tool for entering into the analysis of the 
curve in Fig. 20.

The present curves are of course more uncertain than the 
curves obtained previously, especially because so high magnetic 
fields had to be applied that the temperature effect becomes 
more serious.

Conclusions.
The present investigation gives information about the neutrino 

recoil momentum in the Æ-capture of A37. The result is 

<Muc> = 812 dz 8 keV, (78)

in agreement with the expectations from the Cl (p, n) A37 threshold 
of 816 ± 4 keV.

The result (78) has been checked by measuring in pure 
magnetic fields, “pure” electric fields (72), and crossed electric 
and magnetic fields.

The charge spectrum is found to be

n1 = 26 ± 3 pct.
n2 = 13 ± 4 pct.
n3 = 38 ± 4 pct.
n4 = 18 ± 2 pct.
n5 = 4 ± 1 pct.
^6 = 1 ± 1 pct.

It is ensured that we are dealing with particles of mass 37 amu. 
This is due to the fact that really ze/M is measured. We have, 
furthermore, verified that the charge distribution belongs to 
particles having the energy corresponding to the neutrino emission.

The average charge of the charged particles is found to be

<r7> = 2.64 ± -08,

which is lower than the values reported previously .
4*
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Furthermore, the electrons emitted under the charging of 
the recoils have been investigated, and it is found that Auger 
electrons are emitted with an energy of

^Auger; = 2320 ± 120 eV

and the relative intensity per disintegration of these electrons is 
found to be

Ævuger//^ = 65 ± 5 pct. (82)

The average momentum of all the electrons is found to be

<p> = 69 ± 1 Gauss cm.

The total information obtained shows a certain degree of 
internal consistency, and all currents observed have been ac
counted for.

The results disagree with previous measurements of and 
with previous ideas about the ratio of L to K capture and Auger 
transition probabilities. These two discrepancies are explained 
if a rather large fraction of all transitions occurs so that an 
A37 K electron is absorbed but where the resultant C/37 atom, 
due to the radial correlation between the electrons, appears to 
have a hole in the L shell only7).

The main source of errors is due to the lack of inhomo
geneity of the magnetic field, and a considerably improved in
strument could be constructed with the experience gained in 
our investigations. Many interesting problems could then be 
attacked and high precision in the important investigations of 
angular correlation in /3-decay could be obtained.

Appendix A.
The functions f, g, and h are defined by means of eqs. (37—39) 

inside the regions I, II, and III of the A, B plane in Fig. 26. Inside 
the regions IV and V only a few approximate investigations of 
the functions have been performed.

The functions have been calculated numerically in regions I, 
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II and III in the following way. First, tables of the limiting 
angles (35) and (36) have been computed for suitable values 
of A' and B. Then, the integrands in (37) and (38) have been 
calculated, apart from the factor sin 0, as functions of A' and B. 
The results of these calculations have, for fixed values of B = 0,

0.1, 0.2, 3.5, been expressed as curves with A' as abscissa. 
Then, A values = 0, 0.1, 0.2, . . . have been chosen and tables 
of A sin 0 have been constructed for 0 — 0°, 5°, 10°.......90°.
The integrands have then been found for these values of A' and 
multiplied with sin 0; they have been summed according to Simp
son’s rule. The functions h and g have thus been obtained with 
sufficient accuracy for the present investigations, but the ac
curacy is hardly sufficient when an improved instrument is con
structed. The work involved in improved numerical calculations 
is, however, so great that electronic computers have to be applied.
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Table 1. f(A,
A  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

B

0.0  000 000 000 000 000 000 000 000 000 000 000 000 000
0.1  100 100 100 101 101 102 103 104 106 107 109 111 114
0.2  200 200 201 202 203 204 206 208 211 214 218 222 227
0.3  300 300 301 302 304 306 309 313 317 321 327 333 340
0.4  400 400 401 403 405 408 412 417 422 428 436 444 454
0.5  500 500 502 504 507 511 515 521 528 536 545 549

0.6  600 601 602 605 608 613 618 625 629 631 631 627
0.7  700 701 702 705 710 711 710 708 704 698 691 682
0.8  800 801 803 805 801 790 778 767 755 743 731 719
0.9  900 901 893 879 861 842 825 808 791 776 761 747
1.0  1000 974 951 927 903 881 859 840 820 801 783

1.1  1000 999 981 961 935 911 887 862 842 820 800
1.2  1000 1000 996 980 957 931 907 882 858 835 812
1.3  1000 1000 998 991 970 946 922 897 871 845 820
1.4  1000 999 998 994 981 959 934 908 881 854
1.5  1000 999 998 994 986 968 943 917 889 861

1.6  1000 999 997 994 989 973 950 925 896 867
1.7  1000 999 997 994 989 976 956 930 901 871
1.8  1000 999 997 993 988 978 959 933 904 874
1.9  1000 999 997 993 987 979 962 936 907 876
2.0  1000 999 997 993 987 979 964 938 909 877

2.1  1000 999 997 992 986 978 965 939 911 878
2.2  1000 999 996 992 985 977 965 941 911 878
2.3  1000 999 996 991 985 976 964 941 911 878
2.4  1000 999 996 991 984 975 963 941 912 877
2.5  1000 999 996 991 983 974 961 942 912 877

2.6  1000 999 996 990 983 973 960 941 913
2.7  1000 999 996 990 983 973 960 941 913
2.8  1000 999 995 990 981 971 957 940
2.9  1000 999 995 989 981 969 956 938
3.0  1000 999 995 989 980 968 954 936

3.1  1000 999 995 988 979 967 953 935
3.2  1000 999 995 988 978 966 951 933
3.3  1000 999 995 988 878 965 950 931
3.4  1000 999 994 987 977 964 948 929
3.5  1000 998 994 987 976 963 946 927
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Table 2. h (A, 7?)-1000.
A.............

B.............

.... 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.0........... .... 000 000 000 000 000 000 000 000 000 000 000 000 000
0.1........... .... 0 0 0 1 1 2 3 4 6 7 9 11 14
0.2........... . . . . 0 0 1 2 3 4 6 8 11 14 18 22 27
0.3........... . . . . 0 0 1 2 4 6 9 13 17 21 27 33 40
0.4........... . . . . 0 0 1 3 5 8 12 17 22 28 36 44 54
0.5........... 0 0 2 4 7 11 15 21 28 36 45 55 66

0.6........... . . . . 0 1 2 5 8 13 18 25 33 41 51 61
0.7........... . . . . 0 1 2 5 9 15 21 27 35 45 55 66
0.8........... . . . . 0 1 3 6 10 15 22 28 38 48 60 71
0.9........... . . . . 0 1 3 6 10 16 22 29 39 51 63 76
1.0........... . . . . 0 1 3 6 10 16 23 30 40 53 66

1.1........... . . . . 0 1 2 6 10 16 23 31 42 55 70
1.2........... . . . . 0 1 2 6 10 16 23 32 43 57 73
1.3........... . . . . 0 1 2 5 10 17 24 33 45 60 77
1.4........... . . . . 0 1 2 6 10 17 25 34 47 62 80
1.5........... . . . . 0 1 3 6 10 18 26 35 48 65 83

1.6........... . . . . 0 1 3 6 11 18 26 36 50 67 87
1.7........... .... 0 1 3 6 11 19 27 38 52 70
1.8........... . . . . 0 1 3 7 12 19 28 40 55 72
1.9........... . . . . 0 1 3 7 13 20 29 42 57 75
2.0........... . . . . 0 1 3 8 13 21 31 44 60 79

2.1........... . . . . 0 1 4 8 14 22 32 46 62 81
2.2........... . . . . 0 1 4 8 15 23 34 48 64 85
2.3........... . . . . 0 1 4 9 16 24 35 49 68 88
2.4........... . . . . 0 1 4 9 16 25 37 51 69 92
2.5........... . . . . 0 1 4 9 17 26 38 53 72 96

2.6........... . . . . 0 1 4 10 18 27 40 55 73 98
2.7........... . . . . 0 1 5 10 18 29 41 56 76 104
2.8........... . . . . 0 1 5 11 19 30 43 59 78
2.9........... . . . . 0 1 5 11 20 31 44 61
3.0........... . . . . 0 1 5 11 20 32 46 63

3.1........... . . . . 0 1 5 12 21 33 47 65
3.2........... . . . . 0 1 5 12 22 34 49 67
3.3........... . . . . 0 1 6 12 22 35 51 69
3.4........... . . . . 0 1 6 13 23 36 52 71
3.5........... .... 0 2 6 13 24 37 54 73
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As long as the deviation from the A — 0 case treated in section 
1.2 is small, we are, nevertheless, justified in applying the present 
procedure. Finally, the function f is obtained from formula (39).

Fig. 27. The current z_ resulting from particles of different charges, Muc — 812 
/ceV, H = 37 amu, and V = 30 volts and a = .352 cm as a function of H.

Inside areas I and II the functions are especially simple. 
Inside area I we have

A(A,B) = 0 (84)
and

2i7(A,B) = B \ ? sin 6 (1+A')E(Á-, %/2)/0 = BS(A). (85)
1 2 71

vo

Inside area II one linds 

Jii(A, B) = 1 -B-4BS(A) (86)
and

hn (A, B) = 2 B S(A). (87)
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The function S(A) is, for small values of A, given by

42 A4 46 5 43Si 4} ~ — 4- 4- -A ■ +
~ 24 480 2240 32256’ (88)

The results for the functions f and h are illustrated in Tables 
1—2.

By means of the functions f, g, and h one can find the cur
rents belonging to a given charge distribution, say, for a given 
value of V and as functions of H. This is illustrated in Fig. 27.

Appendix B.
The data obtained in the present investigation are not well 

suited for a least square lit. The number of decimals needed in 
handling the mathematics sufficiently precisely is tremendous. 
This is perhaps best illustrated by a simple example. Suppose 
that measurements were performed, leading to a set of equations 
of the type (22). Say, for simplicity,

Hi + n2 + n3 = 100.1 

nx + 2n2 + 2n3 = 175.0 

n1 + 2z?2 + 3n3 = 199.9

(89)

corresponding to nx = 25, n2 — 50, and n3 = 25 and an ac
curacy of .1. Now use the method of least squares. Thereby, 
one finds

nx + 1.667n2 + 2.000n3 = 158.33 

nx + 1.800n2 + 2.200 n3 = 169.98 (90)

nx + 1.833/13 + 2.333zi3 = 174.96

which are nearly linearly dependent and need*an  even larger 
number of digets than given in order to yield as accurate re
sults as (89).
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Appendix C.
The selection of insulator material was made by testing the 

properties of different insulators by means of the vibrating reed 
electrometer. We shall describe the results with textolite only 
because this material was actually used in the instrument. A test

Fig. 28. Currents through textolite insulator as a function of time when a voltage 
of 120 volts is applied across the insulator. At t = a the voltage is switched on, 
at t = b the voltage is reversed in sign, and at / = c the voltage is switched off.

body was inserted between two condenser plates, one of which 
was connected to the electrometer. An extra condenser plate 
provided the tool for connecting a dry cell across the test body 
in such a manner that possible drift in the dry cell voltage was 
eliminated according to the scheme given in Fig. 10 of section 
2.3. The test chamber was evacuated in order to eliminate cosmic 
ray ionization.

When the voltage is switched on, currents occur due to the 
residual components of the dielectric polarization. This is of 
course important for the recoil spectrometer also. It means that 
all insulators which can be seen by the insulated system con
nected to the vibrating reed have to be left undisturbed as re
gards electric potential changes for sufficiently long time before 
measurements can start. The effect is illustrated in Fig. 28.
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In our case, the insulators are subjected to heavy irradiations. 
It is qidte reasonable to represent the three insulators K in Fig. 7 
of section 2.2 by one textolite resistance of 1/cr ohms, where cr is 
the specific conductivity in ohm-1 cm-1. This insulator is placed 
in a radiation field, but it is fairly well protected by the con
denser plate II. Thus we get an overestimate by considering 
1 cm3 textolite placed in the full radiation field. Since we are 
attempting an approach to an infinitely extended system, the 
radiation intensity will be given by8)

I = 3.7 X 107 n X • 4.8 -10—10 3600 rep/hour, (91)

where n is the concentration of radioactivity in millicuries per 
cm3 and T is the transition energy minus the neutrino energy 
in eV.

Thus, the conductivity at time t, measured in hours after the 
gas inlet, will be given by9)

o'! = glh tanh“ f)

= glx'~ tanha(71/2 Z/25) -> p/1/2,
(92)

where g, h, a, b are constants characteristic of the material. The 
approximation made is sufficient for our purpose because we 
are especially interested in g and the ultimate value of after 
a long irradiation. The above mentioned test body was sub
jected to an irradiation of 250 röntgens per hour for 20 hours 
so that the ultimate value of oq was obtained. The measurements 
of cr carried out after termination of the irradiation follow a 
curve of the form9’

1
1 /oq T kt

where / is measured from the termination of the irradiation, and 
k is another constant characteristic of the material. From the 
experimental result, oq is found to be 10—1 ' and, consequently, 

e __ 1 7 Qone obtains g = 10
For A37 we have 7’^ 3000 eV, and we are using u = 10—3 

millicurie per cm3. Thus we get I — 6.4 röntgen per hour, which 
leads to cq = 10—17'5, which is quite satisfactory.
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I. Introduction.

The nuclear shell model has had considerable success in 
recent years in accounting for various regularities in nuclear 

properties. In this model one considers the nucleons as moving 
independently in an averaged potential. For a particular nucleon 
this potential represents its interaction with all other nucleons 
in the nucleus. In particular, it has been possible by choosing 
an appropriate field, containing rather strong spin-orbit coupling, 
to obtain a succession of single particle states which reproduce 
the experimentally observed discontinuities associated with the 
so-called magic numbers.*

* M. G. Mayer, Phys. Rev. 75, 1969 (1949).
O. Haxel, J. H. D. Jensen, and H. E. Suess, Zs. f. Physik 128, 295 (1950).
** A. Bohr, Dan. Mat. Fys. Medd. 26, no. 14 (1952).
A. Bohr and B. Mottelson, Dan. Mat. Fys. Medd. 27, no. 16 (1953).
A. Bohr, E. Munksgård, Copenhagen (1954).
In the following, these papers are referred to as AB, BM, and AB 1954, 

respectively.
Cf. also D. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

1*

In the usual formulation of the shell model the potential is 
assumed to be isotropic, but it has been found that nuclei with 
proton and neutron numbers very different from those corre
sponding to closed shells have large deformations, as evidenced, 
e. g., by large quadrupole moments. The deformation of the 
nuclear field may have a great influence on the motion of the 
individual nucleons, and it is the aim of this paper to consider 
the binding states of nucleons in such a deformed potential.

The introduction of a non-spherical binding field implies 
that the nuclear shape and orientation must be considered 
dynamical variables. These variables are associated with the 
collective types of nuclear motion which accompany variations 
in the binding field. The interplay between these collective modes 
of motion and the individual-particle motion forms the basis of 
the unified nuclear model.**
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The nuclear properties resulting trom this interplay are 
found to depend essentially on the magnitude of deformation, 
which again depends on the nucleonic configuration. In the 
regions of major closed shells the equilibrium shape of the 
nucleus is spherical, and the individual-particle spectrum may 
be obtained by considering particle motion in a spherical held, 
as in the shell model. It is expected, however, that in these regions 
the nuclei have also additional modes of excitation of the col
lective vibrational type. The dependence of the particle motion 
on the nuclear shape implies for these nuclei a small inter
weaving of collective and particle motion, which may be de
scribed by a perturbation treatment. The further addition of 
particles leads to a larger nuclear deformation. The coupling 
between collective modes and individual-particle modes of motion 
may in such cases lead to a very complicated structure of nuclear 
states.

Still further from the closed shells, however, the situation 
again simplifies. The nucleus then acquires a large deformation 
with a resulting stability of orientation. It is then possible to 
separate approximately between intrinsic nucleonic motion relative 
to the deformed but fixed nuclear field, and the collective rota
tional and vibrational motion, which leaves unaffected the 
intrinsic structure.*

The separation of the different modes of motion is best 
evidenced empirically by the occurrence of rotational spectra, 
which are found to obey the simple theoretical expressions with 
remarkable accuracy.**

The separation of the nuclear motion into collective and 
intrinsic modes corresponds to the assumption of a wave function 
of the product type as solution to the nuclear wave equation

= Z • 9Mb ' ^rot •

Here / represents the intrinsic motion of the nucleons, which 
can be expressed in terms of the independent motion of the

* In AB, BM and AB 1954 this approximate solution of the equations of 
motion appropriate to strongly deformed nuclei is denoted "the strong coupling 
scheme”.

** Cf., e. g., AB 1954 and A. Bonn and B. Mottelson, Chapter 17 of "Beta 
and Gamma Rav Spectroscopy”, ed. bv K. Siegbahn, North Holland Publishing 
Co. (1954).
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individual particles in the deformed field, which is considered as 
stationary. The second factor, ç?vib, describes the vibrations of the 
nucleus around its equilibrium shape, while Trot represents the 
collective rotational motion of the system as a whole.

Most nuclei are expected to prefer shapes of cylindrical 
symmetry, and this is confirmed by the observed rotational 
spectra.*  Therefore we here restrict ourselves to the consideration 
of particle states in fields of the spheroidal type.

In this case of axial symmetry, the intrinsic motion is char
acterized by the quantum numbers £?p, the component of angular 
momentum of each nucleon along the nuclear axis. The total Q 
is given by Apart from accidental degeneracies, states are 
doubly degenerate (corresponding to ±ßp), and the total /, in 
the following denoted /q, is therefore simply the antisymmetrized 
product of individual-particle wave functions /q . The presence 
of direct particle forces produces to first order a shift in the 
binding energies without, however, affecting the wave functions, 
'fhe nucleonic coupling scheme will be essentially modified only 
if the particle forces are comparable with the coupling of indi
vidual particles to the nuclear axis.

The rotational motion is characterized by the quantum num
bers I, M, and K, i. e. the total angular momentum, its projection 
on the space, fixed axis (later denoted by z"), and its projection 
on the intrinsic nuclear axis (z'), respectively. (See Fig. 1.)

We shall not here be concerned with the corresponding 
vibrational quantum numbers, since we always assume that we 
are in the vibrational ground state.

Beside the rotational symmetry around the nuclear axis we 
also assume that the nucleus has reflection symmetry through a 
plane perpendicular to this axis. The wave function has then to 
be symmetrized (to possess a definite parity). The appropriately 
symmetrized wave function may be written in the form**

ii. IMKy . (9,.) + (_)« (1)

* There may be special configurations for which the cylindrically symmetric 
shape is not stable. The rotational spectra are then of a more complex character 
than in the symmetric case. Cf. B. Segall, Phys. Bev. 95, (>05 A (1954) and 
M. .Jean and L. Wilets (to be published).

** BM (11.15).
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Fig. 1. Angular momentum diagram.
In the unified model the total angular momentum / is composed of two parts, 

one part R generated by the collective motion of the nucleus, the other part J 
representing the intrinsic motion of the nucleons.

In the coupling scheme appropriate for large deformations the nucleons move 
independently with respect to the deformed nuclear field. This motion is charac
terized by the constants of the motion the component of angular momentum 
of each nucleon along the nuclear axis. In such a structure the magnitude of the 
total J is not a constant of the motion, though its component on the nuclear sym
metry axis is a good quantum number and is denoted ß, where ß = 27ß„.

''
Finally the rotational state of the system is described in terms of the quantum 

numbers J, the total angular momentum, its ^''-component A/, and its z'-compo- 
nent K.

In the ground state, R is perpendicular to z'(Í2 = K), i. e. the collective 
rotation takes place around an axis perpendicular to the nuclear symmetry axis.

The phase (—is thought of as a matrix when /p (the 
angular momentum of the p1h particle relative to the potential) 
is not a constant of the motion. The normalization factor comes 
from the particular normalization of the rotational wave functions 
Îjîk (A), where 0f refers to the Eulerian angles. The normalization 
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is such that the wave functions represent unitary transformations 
from the coordinate system (æ", y",z") to the nuclear coordinate 
system (.r', y', z’).

The present paper consists of two main parts. In the first 
part a model is formulated for the interaction of the nucleons 
with the deformed nuclear field by introducing a single-particle 
Hamiltonian of a simple type, essentially containing a modified 
ellipsoidal oscillator potential and a spin-orbit term. A con
venient representation, using the eigenvectors of an isotropic 
three-dimensional harmonic oscillator as a basic set, is then 
introduced. The calculated single-particle eigenvalues and eigen
functions, obtained by means of an electronic digital computer, 
are arranged in tables and diagrams.

In the second part of the paper the applications of the single
particle states which have been calculated are discussed. First, we 
deal with the possibility of obtaining the total internal energy of 
the nucleus, the equilibrium deformation, and levels of particle 
excitation. Finally, expressions for the decoupling factor in 
rotational spectra, the magnetic moment, and the electromagnetic 
transition probabilities are given in terms of the particular wave
function representation chosen.

An analysis of empirical data (e. g. level spins, parities, 
magnetic moments, excitation spectra, and transition probabilities) 
compared with the results of the model is to be undertaken at a 
later date.*  Already at this point, however, the general results of 
the calculations are published because of their wide range of 
application to different problems of nuclear physics.

* Note added in proof: For preliminary results of such an analysis cf. 
B. Mottelson and S. G. Nilsson, Zs. f. Physik 141,217 (1955), and B. Mottf.lson 
and S. G. Nilsson, Phys. Rev. (in press).

II. Calculation of the Binding States in a Deformed 
Potential.

a. Choice of field.

To represent the interaction of one nucleon with the nuclear 
field we assume a single-particle Hamiltonian of the following
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form*» (For the sake of completeness we should really add 
a suffix p to all the quantities in this section, referring to the 
fact that they are single-particle quantities. However, we simplify
the notation by dropping this index from the beginning.)

H = //0 + <:/•$ + I)f,
(2)

where
Af z •> /•> f> •> ,•>r r 1 , + — (CO" .1’ “+ CO" y "+ CO" Z ") , (2 a)

w here x', y', z are the coordinates of a particle in a coordinate 
system fixed in the nucleus.

This means that an oscillator potential is first adopted for 
the sake of simplicity. To this is added the usual spin-orbit term. 

_2
The 7 -term then gives a correction to the oscillator potential 
especially at large distances (important for high /-values). This 
serves to depress the high angular momentum states. One might 
also say it has some of the features of the interpolation, between 
the square well and the oscillator potential, which is usually em
ployed in the shell model. In the case of spherical symmetry, 
we must require that (2) and (2a) give the known sequence of 
single-particle levels considered in the shell model. This puts a 
strong limitation on the choice of C and I) (see further the dis
cussion on p. 15). In Fig. 2 one can compare the level scheme 
(with our parameter choice) for the spherical case, with the level 
spectrum proposed by Klinkenberg* ** ***,  which represents a com
pilation of empirical data interpreted on the basis of the shell 
model.

* The author is indebted to Dr. A. Bohr, Dr. B. Mottelson, and Prof. I. Wal
ler for suggestions regarding the choice of a simple potential.

** Several authors have considered the motion of nucleons in deformed fields. 
E. Feenberg and K. G. Hammack, Phys. Rev. 81, 285 (1951), and S. Gallone 
and C. Salvetti, Il Nuovo Cimento (9) 8, 970 (1951), consider an ellipsoidal square 
well, and D. Pfirsch, Zs. f. Physik 132, 409 (1952), treats the anisotropic harmonic 
oscillator, all using perturbation theory. S. Granger and R. D. Spence, Phys. Rev. 
S3, 460 (1951), report that they have an exact solution for an infinitely deep 
spheroidal well, without any 7-s-term in the Hamiltonian, however. Finally, 
Pfirsch, in the publication mentioned, and S. Gallone and C. Salvetti, Il 
Xuovo Cimento (9) 10, 145 (1953), have studied the exact solutions of an anisotropic 
harmonic oscillator without spin-orbit force.

*** P. F. A. Klinkenberg, Rev. Mod. Phys. 24, 63 (1952).

It is expected that many features of nuclear states obtained
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N-0 (^0) ---------SV2

H- H„ * D? *Cls

Pig. 2. Level order for the spherical case compared with the shell model level order.
Energy levels of the potential assumed in formula (2) for the spherical case 

(<) = 0) are plotted to the left. The right part of the figure shows the level scheme 
proposed by P. Klinkenberg, which he has obtained from empirical data inter
preted according to the shell model. The level scheme of Dr. Klinkenberg is 
reproduced by his kind permission from Reviews of Modern Physics. 
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one single parameter of deformation d

(3 a)

(3 b)

coxco{/coz = const.

from (2) are more general than the particular field employed, 
since the structure is especially determined by the angular pro
perties, while the radial matrix elements alone reflect the detailed 
properties of the nuclear field.

We confine ourselves to the case of cylindrical symmetry and 
further introduce

Neglecting the 
x', y', z'. In this

- -2
/•s- and I -terms the problem is separable in 
case a change, e. g., of cox only changes the 

scale of the wave function along the .r'-axis. As the scale is pro

portional to -7=, the condition of constant volume of the
j/cox 

nucleus leads to

co; = 1 -

Keeping this condition in the general case together with (3 a) and 
(3b), co0 has to depend on ó in the following way

/ 4 16 \-1/6
CO0(<3) = . (4)

co0 is the value of co0(0) for <3 = 0. It turns out that d is related 
to the quantity ß, used in the papers by A. Bohr and B. Mottel- 
son, to first-order as*

* Cf. (16) and BAI (V. 7).

(ä)

We introduce new coordinates 

(6)

and split Ho into a spherically symmetric term Ho and a term 
representing the coupling of the particle to the axis of the 

deformation
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(7)
where

H„ = +r2! (7a)

h0 = — l/^7-s y2o- * (7 b)

b. Choice of represental ion.
o

A representation is chosen with H{} diagonal, together with 
— 2 o
l , lz, and sz, which all commute with Ho. The corresponding 
quantum numbers are denoted /, zl and 27.

None of the above operators commute with the total Hamilton
ian. A commuting operator, however, is jz — lz + sz. We denote 
the corresponding quantum number by Q. For the states corre
sponding to a given Q, the vectors | A7/127> with 4 4- 27 = £> 
are used as basic vectors. The quantum number represents 
the total number of oscillator quanta. One has

Ho I NlAE > = HV + 11 h co01 M/127 >.

In configuration space representation the basic vector looks like

(8)

where the relation
2 n + I = Ar (8a)

defines n. Further 
metric function.

n, r2 is the confluent hypergeo-

In this representation the different parts of the total Hamil-

* We assume here and throughout this paper that the phases of the spherical 
harmonics are chosen in accordance with E. U. Condon and G. H. Shortley, 
The Theory of Atomic Spectra, Camb. Univ. Press, London (1935).
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tonian have very simple matrix elements; in particular are / and o , ,
Ho diagonal in this representation.

The matrix elements < I'A'X' | 1 -s | 1AX )> have the following 
selection rules

I A' IZ'+l
7=/',/l=¿ , X = , A + X = A' + X'.U'±i

We write down, for completeness, the non-vanishing elements

< M± 1 =F I /-s j hl ±> = l|/(/±±) (7± A + 1) (9a)

< IA ± P'S I hi ±> = ±1/1, (9b)

denoting 27 = + ^- and X = —1 simply by d~ and —, respect

ively, in the vectors.
The only part of the Hamiltonian not immediately given is 

H,), which is proportional to r2T2o- H easy to show that

</'/!' I y20|//l> = 1/ — ]/2 /+—< 7 2/ 0 I 7 2 /'Zl'></2()() I 7 2/' 0> 
y 4 n y 2 I + 1

in the Condon-Shortley notation for Clebsch-Gordon coefficients.
Matrix elements of r2 are calculated most easily with the help 

of recursion formulae for confluent hypergeometric functions. 
The general matrix element for rz is given later in (41), but the 
simplified expressions for Z = 2 are given here:

< NI I r2 I Nl > = N + ~

< Nl—2 I r2 I N/> = 2 1/ (n + l)(n + / + *

(11a)

(11 b)

(He)

(10)
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< N—2 1—2 I r2 I Nl> = + I + (lld)

<N—2 I + 2 I r2 I Nl > = |/n (n — 1). (lie)

The seleetion rules for r2 T20 are

i /' IN'A = A', Z = £', I =1 , N = I
r ± 2 I N' ± 2

The selection rules for r2 )'2O imply that there is a coupling 
between states with different Ar (the difference in zV being an even 
number). The approximation is made, however, that this coupling 
is neglected. Levels belonging to, e. g., the .V-she 11 and the 
(AT + 2)-shell are on the average separated by an energy of 
2 hco0, which, for most values of the parameters, is much larger 
than the corresponding non-diagonal coupling energies.

In fact, it can be shown by changing the representation 
slightly, that these couplings between shells of different .V can be
accounted for by a small change in 
parameters <5, co0 etc., and a small i 
-2
l -terms (cf. Appendix A).

the interpretation of the 
ation of the 1-s- and

Non-vanishing matrix elements of H are thus considered only 
between base vectors NlAXy belonging to the same Ar and Q.

A note should be made at this point that there are a few 
cases when levels of the same spin and parity (but belonging to 
A’-shells with xV different by two) cross each other within the range of 
the parameter considered. Fig. 5 shows two such crossings be
tween levels of the Ar = 4 and the N = 6 shells. One crossing occurs 
between the Q — 1 /2 levels #51 and # 60 and the other between 
the Q — 3/2 levels # 42 and # 57. (Concerning the labelling of 
the levels, see p. 19.) These crossings are removed when account 
is taken of the neglected coupling terms between the AT- and the 
(xV + 2)-shells.*  The coupling terms between the crossing levels 
are calculated in Table II.

* The corresponding energy levels of the Hamiltonian Ht, considered in Ap
pendix A, actually cross in the exact treatment for a deformation different from 
zero. With that form of the Hamiltonian (//,) there is, however, associated an 
additional degeneracy compared to the case considered here.
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c. Details of calculations.

From (2) and (7) we have

H = Ho + Hô + Cl-s + DÍ\

As Ho is diagonal in the representation chosen, and its matrix 
elements are all ecpial for a constant ;V, it is advantageous to 
•°C- °bring out of the matrix H and only consider H — Ho.

We introduce new parameters /z and x instead of C and Z)

1 C_
2 hco0

2 I)

(12a)

(12 b)

Further we introduce a new «-dependent deformation parameter

which does not depend on ô.
It is then convenient to write

where
H—Ho — xhco0R,

R = r/ U — 2 1 • s — /il

(12e)

(12f)

is an operator that depends only on two parameters, rj and /i.
The final calculations now consist of an exact diagonalization 

of the (dimensionless) matrix R in the representation chosen. 
R is treated as a function of the deformation parameter r¡, and 
it is diagonalized for a sequence of ^-values (cf. below). The 
only other parameter that enters R is /z, which is independent 
of the deformation. The choice of /z is discussed below.

From the diagonalization of R, or rather its submatrices 
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belonging to certain N and Q, we obtain the eigenvalues r^^(^)< 
(Here « numbers the différent eigenvalues of the matrix.) The 
corresponding energy eigenvalues of the total H are then given as

= (jV„ + |j/i«>0(d) + (13)

Let us denote the corresponding eigenvector | NQu >. Its con
figuration space representation is denoted by %q in the Intro
duction.

The values of x and // are chosen, as mentioned earlier, in 
such a way that for <5 = 0 the sequence of levels of the shell 
model are reproduced. Of course we are free to let both x and « 
vary from shell to shell, i. e. vary with A7.

The parameter // determines the sequence of levels within 
the group of states belonging to a particular A7 by depressing 
(fo r ft > 0) the levels corresponding to higher /-values. The total 
energy spread of levels belonging to the same A7-shell is deter
mined primarily by the parameter x. In the numerical calcula
tions we have assigned values of fi for each A7-shell so as to 
reproduce (for 0 = 0) the assumed sequence of shell model 
levels as well as possible.

In the numerical calculations fi is chosen in the following
manner

N = 0, 1, 2
A7 = 3
N = 4
A7 = 5, 6
AT = 7

fi = 0
fi = 0.35 (0, 0.50)
fi = 0.45 (0.55)
fi - 0.45
fi = 0.40.

In general, this choice of fi means that in the lower A'-shells we 
use a pure oscillator and for higher iV-values we approach more 
to a square well (cf. Fig. 2).

In order to examine the sensitivity of our results to the parti
cular choice of fi, we have performed calculations for the shell 
with N = 3 employing a sequence of different /¿-values. The 
resulting level spectra are plotted as functions of the deformation 
parameter in Figs. 3 a, b, c. It is seen that, even for rather 
different choices of the level spectrum in the spherical potential 
(r¡ — 0), the results become quite similar for large r¡.
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o
Fig. 3 b.

-6 -4 -2 2 6 I
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Fig. 3 c.

Fig. 3 a, b, c. The influence of the choice of I -admixture in the potential on the 
energy eigenvalues.

Eigenvalues r (rj) corresponding to A' = 3 are depicted as functions of the 
deformation parameter with three different choices of p, the parameter of 
I -admixture in the assumed potential. The connection between the eigenvalues 
r (/;) and the level energy E is given by (13). One may notice that for large //-values 
(large deformations) the level order within the A" = 3 groups of levels is rather 
independent of p.

Finally, as regards the choice of x, one secs from (13) that the 
level spread within each Ar-shell is directly proportional to x. 
As the xV-shells overlap for a larger number of nucleons, x has 
to be chosen within certain limits to reproduce for ó = 0 the 
level order of the shell model. The arbitrariness in the choice 
of x is important particularly for Ar < 3.

In the final plot (Fig. 5) the value of x is taken to be 0.05 
for all levels. It is, however, easy to modify the plotting and use 
the result of the calculation for another x-value. This will mean 
two things: a) the same value of tj now corresponds to another 
deformation d according to (12 c), b) the second term in (13) 
is changed.

A reasonable value for co0 may be obtained by taking 
Dan.Mat.Fys.Medd. 2», no. 16. 2 
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the mean value of r'2 for all the nucleons to be equal to 

- • (1.2 • 10“13A¿)2 cm2, which gives /ico0^41 A-» MeV.*

* An estimate for the harmonic oscillator potential in accordance with the 
Thomas-F'ermi statistical model agrees with what one obtains by using the wave 
functions of the individual nucleons.

5
Thus for A 100 one has h(ni}— 8.8 MeV. This choice of 

hco0 and the choice of z made in the plot (z = 0,05) give, e. g., 
a spin-orbit splitting between g9/2 and glr¿ of 4.0 MeV.

In the calculation, submatrices of R were diagonalized up to 
and including N — 6. The largest, which corresponds to N = 6, 

1 . ,  . . .
ß = -, is then a 7x7 matrix. The calculation is repeated for 

six values of g (g = — 6, — 4, — 2, 2, 4, 6). Matrices of order 
3x3 and higher were treated with the help of the digital com
puting machine BESK in Stockholm. A method due to Jacobi 
was used in the machine calculations for matrix diagonalization.

Finally, the case 0 = 0 (or g — 0) corresponds to spherical 
symmetry and is already worked out. One obtains the behaviour 
of the levels in the vicinity of ô = 0 by introducing an | NljQ)- 
representation. Here the Hamiltonian is diagonal except for H¿, 
which can be treated as a perturbation for small Ô.

d. Arrangements of tables and main diagram.

Table I gives the eigenvalues r (rf) and the corresponding 
eigenfunctions as a sequence of coefficients Az p-1/2 and Az _Q+i/2, 
defined by

£?« ) = (A/ £)—1/21 -Vf (ß — 1 /2) + ) + Ai q +1/2 I V / (ß +1/2) — )}, (1 •
i

where the normalization of Aia is discussed below. (If we write 
(14) with coefficients a//i, we assume a normalization al a — 1)

lA
The basic vectors | NI (Q — 1 /2) + > and | NI (ß + 1 /2) —> are given 
above each separate table.

are written the base vectors o52 + ),

Consider, as an example, N = 5,-ß = - . Above the table 

532 + >, 553 — ) , and
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I 533 —>. The eigenvalues rx, r2, . . r4 are listed for each 
value of tj. Below each of them there are four numbers, which 
are the coefficients A52, A32, . . . with a normalization such that 
the first listed coefficient equals 1. Take, e. g., 77 = —4. The 
largest eigenvalue is — 2.676. To this corresponds the eigen
function 1.000 I 552 + > + 1.355 | 532 + > — 1.030 | 553 — > 
— 1.074 I 533 — >.

The numbers to the left in Tables I are referring to the 
curves in Fig. 5. In some instances these numbers are missing. This 
means that the level in question lies outside the range of the 
energy scale used in the diagram. Curves coming into the drawing 
from above left are labelled by letters.

Fig. 5 shows the energy eigenvalues Ea given by (13) as 
functions of the deformation parameters 77 or Ó, to which latter 
rj is related by (12 c). The scales for 77 and Ô are shown at the 
bottom of the drawing. The calculated points corresponding to 

= — 6, — 4, — 2, 0, 2, 4, 6 are fitted by curves with the further 
requirement of a given slope at 77 = 0 (determined from pertur
bation calculations, cf. above). The curves are labelled by the Q- 
number and the parity sign. The energy scale is ha>0 (<3); this ¿-de
pendent unit is chosen rather than the constant unit tiå)0 to sim

plify the drawing. What is plotted is —- = 1 + —-År ' •
/i(o0 \ 2/ w0(<5)

Notice, further, that flic true energy scale is different for nuclei with 
different A, as /îco0 may be assumed to vary with A as A-1/3 (cf.
p. 18).

pure

The bottom level, corresponding to £? = -+, which is a 

000 + )-state, is left out in Fig. 5 in order to save space.
15Of the iV = 7 states onlv the Q = — state has been calculated,
2

and thus one must expect additional levels in the diagram for 
energies above, say, 6.6 /ico0.

Added in proof: In the analysis of the empirical level spectra 
(B. Mott elson and S. G. Nilsson, Phys. Rev., in press) it has 
been found that an improved fit for the protons in the .V = 4 
shell is obtained by increasing slightly the value of 11. The cal
culations have therefore been performed also for // = 0.55. The 
results are given in fable lb. (The eigenvectors are normalized 

2*  
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such that Z ai 4 = 1 .) Ehe corresponding energy level diagram 
lA

is shown in the above reference. In this diagram z is chosen 
= 0.0613, compared to 0.05 in Fig. 5.

e. Discussion of the main leuel diagram.

Many of the features of the level diagram in Fig. 5 can be 
understood from simple considerations.

Thus, in the neighbourhood of spherical shape, the stales can 
be labelled by the I and j quantum numbers. The degeneracies 
corresponding to Ô = 0 are removed by the surface coupling 
term in such a manner that for a positive t) the energies increase 
with increasing Q. For negative ó the level order is the opposite.

With increasing deformation, the states of ditlerenl j and I 
(but the same Q and parity) are coupled together, and for inter
mediate deformations the situation may be rather complex, as 
seen from the peculiar variations with d of some of the energy 
levels.

For sufficiently large deformations, the situation again sim
plifies since for this case one may consider as a zeroth approxima
tion the levels of a pure (anisotropic) harmonic oscillator poten

tial and treat the 1-s- and 7-terms as a perturbation. In this 
limit the states may be labelled by the quantum numbers A’, nz 
(number of oscillator quanta along the r'-axis), M and Z.

The quantum numbers appropriate at large deformations can 
easily be assigned to the energy levels in Fig. 5 by noting the 
following rules. For the levels in the shell A’ the lowest stale of 
Q — 1/2, assuming positive deformation, has nz — X, the next 
has nz — X—1 etc., so that the highest D — 1 j'2 level has 
nz = 0 . Similarly for £? = 3/2 the lowest level has nz = X— 1 , 
the next nz = X—-2 etc. After the n2-values have been assigned, 
the zl-values can be simply obtained by noting that J is even 
or odd according to whether (A' nz) is even or odd. Since _Q 
is known, this determines A and Z uniquely.

As an example, it is in this way found that in the A’ — 5 shell 
the levels corresponding to nz = 0 for large positive deformations 
are the ones labelled 28, 48, 40, 70, 61, and A. It is also seen 
that all these levels tend to become parallel and to increase 
steeply with the deformation, corresponding to the fact that tor
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these levels the oscillations are in the plane of the small nuclear 
  —2

axes. At the same time it is apparent that the /-.s- and / -terms 
in the Hamiltonian, which are responsible for the spin-orbit

Fig. 4 a.
Figs. 4 a and. 4 b. Comparison of a perturbation treatment with the exact calculations. 

Energy levels for the X — 5 shell are plotted in units of xfico0 in Fig. 4 a 
for a deformation defined by 1] = 6 and in Fig. 4 b for a deformation 1/ = —6. 
The group of levels (a) represent the eigenvalues Eo of the pure oscillator potential

(ß) includes first order perturbation terms of l-s and / , while (y) shows the 
energy eigenvalues obtained by the exact machine calculations.

splitting, have still a very appreciable influence on the level 
order.

In Figs. 4 a and 4b the energy levels obtained by treating the 
- — —2
l-s- and I -terms as a perturbation are compared with the exact 
level spectrum for the AT = 5 shell in the case of the largest 
deformation considered in Fig. 5. To the left in Figs. 4a and 4b
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Jt h¿ja
20

are the pure oscillator levels (a), while the levels (/?) include the 
- - _2

diagonal values of the Z’.s- and / -terms, which are calculated 
in Appendix B. The comparison with the numerically calculated 
levels (y) shows that such a first order perturbation calculation, 
for the very large deformations in question, reproduces the main 
trends of the level order, even though there are still a number of 
significant differences between the level spectra (/?) and (y). 
This is especially the case for negative deformations (cf. Eig. 4 b).
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III. Examples of Applications of Tables and Diagrams.

We consider below a number of the nuclear properties which 
may be treated by means of the calculation given above. It should 
be remembered that the essential condition, underlying all of 
the work in the present paper, is that the nuclear deformation is 
essentially larger than the fluctuations. This condition is found 
to be satisfied only for configurations far removed from the closed 
shells.

a. Calculation of total energy and equilibrium deformation.

The total energy of the nucleus is not the sum of the energies 
for each individual particle because, in that case, two-particle 
interactions would be counted twice, three-particle interactions 
three times, etc.

The expression to be used thus depends on which kind of 
interaction is postulated. Assuming only two-body forces, the 
Hamiltonian for the z : th particle is

H, = 'I\ +\', = Ti + Z Vil-

The Hamiltonian for the total nucleus, however, should be

s = Ar. + I 2% = + (15)
i - i, j - i - i

The total wave function of all the nucleons, describing their 
motion relative to the deformed potential, is the product of the 
wave functions for each occupied particle state, appropriately 
antisymmetrized. To find the total energy (í(ó) we then have to 
find the expectation value of with respect to the calculated 
single-particle wave functions.

The equilibrium deformation deq is now given by 

which gives the minimum total energy lfmin. The energy values 
are calculated with good accuracy for seven points on all the 
levels. As the levels cross, different combinations of levels will 
give the lowest total energy within different ranges of ô (or rf). 
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For each single combination ol' levels the energy minimum is to 
be found, e. g., from an interpolation formula utilizing several 
or possibly all of the calculated points corresponding to this 
particular level combination. The lowest minimum gives the 
ground state. Other minima, corresponding to other level com
binations, give particle levels of the excitation spectrum.

In this connection it should be emphasized that the total 
nuclear excitation spectrum will have three distinct modes. On 
each particle level, characterized by 42, there will be super
imposed a vibrational band, and furthermore on each level 
(including the vibrational levels) a rotational band. The level 
distance for heavy nuclei is for the particle spectrum of order 
100 KeV (see Fig. 5), for the vibrational spectrum of the order 
of a few MeV. Finally, the rotational energies depend on the 
nuclear deformation, but for heavy nuclei and large deformations 
they are much smaller than the vibrational energies.

To calculate the equilibrium deformation in the prescribed 
way it turns out to be essential to take the couplings between 
different iV-shells into account. This can be done, as pointed 
out on p. 13, by reinterpreting the machine calculations as per
formed in a slightly different representation, accompanied by a 
small change in the definition of the parameters (cf. Appendix A).

This coupling causes a slight repression of all the energy 
levels without affecting the level order. It thus amounts to a 
change in the whole energy scale (cf. (A4), (4), and (13)). 
Furthermore the scale factor is dependent on deformation.

The effect is important in decreasing the effective restoring 
force of the nucleus against deformation. The energy minimum is 
thus shifted towards larger deformations. An approximate ex
pression for the total energy (f, taking these effects into account, 
is given in Appendix C.

It should be emphasized that the determination of ôeq involves 
a number of simplifying approximations. Apart from the assump
tion regarding the shape of the nuclear potential and the two-body 
character of the interactions, we have neglected the effect of 
residual interactions between the nucleons not included in the 
average potential (as, e. g., the pairing energy terms).

However, in the application of the model an independent 
estimate of ô is obtained from the empirically determined
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quadrupole moment. Assuming a charge distribution in accord
ance with the Thomas-Fermi statistical model applied to the 
oscillator potential, one obtains to second order in d

Qo — 0.8-Z-7?¿ó- (1 +|ó (16)

where 7?z is to be taken equal to the radius of charge of the 
nucleus or Rz — 1.2 • 1()—13 • A1/3 cm. In obtaining this result the 
convention has been employed to put the mean value of r'2 for 
all the protons (cf. p. 18) equal to 3/5 R“z.

The relation between the measured quadrupole moment, 
denoted by Qs, and ()0 is given by*

3 7f2-7(7+ 1) 
(/+ 1 ) (2 7 + 3) k’ (17)

As regards the particle levels of the excitation spectrum, one 
cannot expect to obtain the exact level order and even less the 
correct energy differences between the levels. 'The diagram should 
tell, however, which level spins and parities are likely to appear 
in the lowest states of the spectrum.

b. Determination of ground state spin ((nd decoupling factor.

The component of angular momentum along the axis of 
deformation 72 is a constant of the motion for each particle. 
Q is given for each of the energy states drawn in Fig. 5. In the 
strong coupling limit the total 72 equals ^/72„. Each energy state 

p
is degenerate corresponding to ±72. If we have two groups a 
and b of equivalent particles —- neutrons and protons — the par
ticles of each group fill pairwise in the levels independently 
of the other group. If the number of particles in the group a is 
even, 72(l = 0, if odd, then 72a equals the 72p of the last unpaired 
particle.

If one of the groups is even, the case is simple enough for 
the ground state, 72 equals Qb, if b is the odd group. If both a 
and b are odd, the states with 72 — | 72rt dz Qb I are degenerate 

* BM (V. 6).
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in first order. The diagonal contribution of n-p-forces and the 
rotational energy decide which Q corresponds to the ground state.

It turns out that always the ground state spin of the nucleus

Zo = £? = A', except when Ï2 = -, in which case the ground 

state spin /0 is given from Table III once the decoupling factor 
a is determined.*  (See below.)

The decoupling factor a appears in the expression for the 

rotational energy for odd-A nuclei with L? =

-^rol
fl2
21

9

(18)

and is thus experimentally measurable. In the j-£?-representation, 
with quantum numbers I, s, j, Q, where is written 
yel<.r\Xljß>,
i

and it can be transformed to the Z-A-representation with quantum 
numbers l, s, A, X, where ^/l <I N/(s) A27>, by
means of the relations A^E p

ci = X <lr>AS\'^jß> alA-

AX - -

In the Z-A-representation then

« = (-)'2’(«<o +2 l/ñT+l) , (19)
I

where ( — )z is the parity of the state in question, and where 
the coefficients alA are, as before, the representatives of the 
particle wave function in the | NlAX ^representation. The

♦ Cf. BM p. 30. Table III is based on BM (11.24). Io is determined as the half 
integer spin I which gives the minimum rotational energy Wrot-

** See A. Bohr and B. Mottelson “Collective Nuclear Motion and the Unified 
Model”, Chapter 17 of “Beta and Gamma Ray Spectroscopy” edited by K. Sieg
bahn, North Holland Publishing Co. (1954).
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values of a¡ ¡ for the calculated eigenstates are the same as the 
coefficients listed in Tables I, apart from a different normalization 
(cf. p. 18).

c. Determination of magnetic moments.

We next consider the magnetic moment for an odd-A nucleus 
in which all the particles except the last one fill the different 
orbits in pairs. The generalization to configurations in which 
several particles move in unpaired orbits is straightforward.

By definition, the magnetic moment expressed in units of the 
nuclear magneton is

U - —------------ ,A 7+1
where

Ä°P = 9 + + 9 i¡ + 9

and R is the angular momentum of the surface.
Using y = j 4- $ and j + R — I we can write g as

= — 9/) < * ’ j > + <9i — 9r) <j‘i> + 9n< 72 >]. (20)

Here is given in the /-^-representation of BM.*  It
can be written

</■/> = + + (21)

where the Z-zl-representation of a is given directly from (19).
For < s-I) it is more convenient to use the Z-zl-representatioii 

from the beginning. The part of the wave function (1) which is 
written (—)/~J y & has the meaning \ cfyJ Q. In the

7
/-Z-representation then

+ ~A -?>■ (22>
/ I AZ

One obtains

* BM 11.18.
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<s-7> (23 a)

1). Specializing further

(23 b)

s

(24)

simplifies to

1
4

Turning now to a, we first consider
(20), (21), and (23) one obtains

which for / = Ï2 — K

(where we have utilized (aR) 4- ufj ) = 
i

to a state of odd parity,

[1 +(-)']
2 i

the case Q From9

I = -, (23) simplifies to

b (</i — (ht) &K + gR / ( / -r 1) j,

For the case -Q = K —

= jL j j (V.s — .7/) I 2?(«Lq_ 1/2 — , 1/2) + f// 1 + 91< | ■ <24 a)

It may be pointed out that (24) can be rewritten in the form
ally simple form

where

9o = \ffs < sz’ > + 9i < b- >/ •

(24b)

(24 c)

For the case Q = K = — (when some extra terms enter due
2

to the symmetrization of the wave function) equation (24) is 
somewhat modified
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1
/Ti

+ (¡7/ — g b)
(25)

where a is given by (19). For free nucleons one has gs =
and = {()) for protons and neutrons, respectively.

; 5,5851
3,826'

Under the

assumption that the rotational motion can be described in terms 

of an irrotational flow of uniformlv charged nuclear matter, ql{ —
"1 .A

For the case I = Í2 = K = - and odd parity, when (s-/>

according to (23b) is independent of the internal wave function, 
(25) simplifies to

= 3 ~~ 9r) + r// + 9li (26)

which means that, for this particular case, there exists between 
the quantities ft and a relation that involves only the gyro- 
magnetic ratios gs, gt, and gI{, but not the nucleonic wave 
functions.

c. Determination of electromagnetic transition probabilities.

The electric and magnetic multipole operators in the space 
fixed system (.r", y", z") are given by*

C a /') ( 2 / a )

-X. (Â, /<) = 27 • Vp [rf; Y}ll (d'', qy')]

+ 9,< $ ’}{v d r ■
(27b)

The first terms in the expressions represent the transition 
moments of the most loosely bound particles which can be

* BM (VII. 5, 6).



30 Nr. 16

individually excited (thus the sum over p is to be taken only 
over the transforming nucleons), while the last terms represent 
the multipole moments generated by the collective motion of the 
nucleus. The recoil effect of the nuclear core (important for 
dipole transitions) is included in the particle part of (27 a).

The term a! in (27a) is the Hermitian conjugate of the 
coordinate describing the deformation of the nuclear surface in 
the coordinate system fixed in space.*  7?0 is the nuclear radius. 
As regards the collective part of the magnetic multipole operator, 
Ûi (r) is the collective angular momentum density, and one has 

í)i (r) dr — ft. This part is in general difficult to handle, except 
in the case X = 1 . In that case, it can be incorporated into the 
first term simply by changing gs to gs— gR and g, to g¡—- gR.

* AB (1).
** Cf., however, G. Alaga, K. Alder. A. Bohr, and B. Mottelson (Dan. 

.Mat. I-ys. Medd. 29. no. 9, 1955). In this paper, the authors take into account a 
small decoupling of the rotational from the intrinsic motion, leaving ß only 
approximately a constant of the motion. This effect may render the collective 
term of (27 a) important for certain particle transitions, particularly of E2 type.

*** BM (\‘11.1). cf. also .1. M. Blatt and V. b. Weisskopf, Theoretical Nuclear 
Physics. .J. Wiley and Sons. New York (1952). chapter Nil.

For the strongly deformed nuclei one can distinguish between 
particle transitions which are associated with a change in the 
intrinsic wave function and collective transitions which leave 
the internal particle structure unaffected. Of the collective tran
sitions those that have been most studied are the rotational 
ones which leave 9?vib unaffected and only change the rotational 
state T of the system.

The intrinsic structure /q affects the transition probabilities 
for particle transitions and for rotational transitions of M 1 type. 
We shall in the following limit ourselves to those cases. We can 
then simply leave the last term of (27a) out of consideration 
since it is effective only in collective transitions (and we shall 
not consider rotational 1£2 transitions)**.

It is useful to introduce the reduced transition probability

B(Å, /-*/')  = | < Ï2', I'K'M' I 9.1Í" (Â,//) |£>, //¿U> |2. (28)
/'-V'

The probability for a y-transition with a frequency co, where ha> 
is the energy difference between the initial and final state, is then***
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T (Â) = (Â + _l)_l/«i2z+1
2 [(2 2+l)!!]2/i\c/ Ç } (29)

B (EX) also enters the expression for the EÅ Coulomb excita
tion cross sections*.

* BM (Ap VI.17, 18).
♦* Cf. G. Alaga et al., loe. cit.

As pointed out, the coordinates x" etc. in (27 a, b) refer to a 
coordinate system fixed in space. It is convenient to transform 
the multipole operators to the coordinate system fixed in the 
nucleus

SB" (A, /<) = (0¡) SB' (A, r), (30)
V

where is of the same functional form as but depends on 
the new coordinates x'. The functions T, depending on the Eule- 
rian angles 0¿, are the same as those used in (1).

In the matrix elements in (28) the integration over the Eule- 
rian angles can now be performed and the summation over // 
and M' can be carried out.**  One then obtains

B (2, I I') = I < IÀK K' — K I IM'K' > ( G» K' ~ K) %QdT
•/

-<IÅK —K'—K IIÅ I' - K' > ( X- <2'1 ’ æ G. - K' - K) XndT
(31)

The second term contributes only for the empirically rather 
unusual case À > K + K'. In evaluating B (2), we have used

jj ®M-K- + I HFM' > < UK, I IÅI'K' >, (32)

where dEE signifies integration over all three Eulerian angles.
We shall later need the closely related formula

^A'Yh,V>AdS¡2 = |/(2^(2/'2+l)1^ aAV I ,U'A' > < ° ° I IU' ° > <33>
Equation (10) is a special case of (33).

It is of advantage to make the transformation to dimensionless
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2 2+1

(34

where

(34 a)

2 2 2+1
4 7T (35

■\{IÅKK'

where

A7>
(35 a

</20 O | IÂI' O >
(35 b)

2 2—1

r2

The same formula holds for 5-(7 rAV;r) with .s__ exchanged for /_ 
etc.

For particle transitions due to electric multipoles, we can 
write

B(EÂ, I-~ I’) = e«( 1+ (-)<*  +

* Cf. H. Bethe, Quantenmechanik der Ein- und Zwei-Elektronenprobleme, 
p. 559, Handbuch der Physik, XXIV/1, Berlin (1933). Note, however, our different 
choice of phases which agrees with that of E. U. Condon and G. H. Shortley, 
The Theory of Atomic Spectra. Cf. also M. E. Rose and R. K. Osborn, Phvs. Rev., 
93, 1322 (1954).

Æ|Z2Z'â"> + +.,’¿(—)7'~ a"</2A.' _A"_

+ _ >'2 A X“1h- !, +1 |/(A - v)(2— v—1 ) 

-l|/(A + r)(A+>.-l)Z+ r'-'Y;._,

= y<.V7'|/|A7>|/2-'±1~ 1 1 I' 2 /' + I

• I«. Z’/27 al'A' al A < UAK'—Z<| lÅl'A'y 
A'AZ'Z “

/)
variables (6). This gives a factor ------ for the electric multipole

hl/coo,/
/ h 1

operator and a factor — 2 for the magnetic multipole opera-
\Mo)01

tor when r' is replaced by r.
The operator 7 • ( V rz T;r) can be rewritten*

GeA _
i'i
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For transitions due to magnetic multipoles we shall for X > 1 
omit the last term in (27 b), which is expected to have a relatively 
minor influence. One then obtains

(MX, Æ'—Æ|n/7T>

+ bMn(-)r + K\lÅK -K’-K\IÅI' -K'^GÏh,
where

K- + 1/2 + r

GHi
£<N'l'\

1’1
|M><za-ioo|u-iro>|/||±l.

aÎA'alA
'AZ'Z

A(ç)d_2;;2;(—l/lg|ZÂ—1 Z' -Æ>

+ B(q) ô , îô 1< IX — 1 J 7 + 1 I IX — 1 /'—+'>
’ 2 2

— C(q)ô id 1< l X — 1 A q — 1 I IX— 1/' —Æ> 
2,1 2 20 2

A(q)-(— 2Æ)< IX— 1 + ç| IX— 1 /'—zl'>

+ ß(g)p/(z' + zi/)(r—z' + i)</a—1ZI7 + 1 \ix—1 r —æ + i> 

- C (q) [/(Z' — A') (I' +A' + 1)< IX— 1 A q — 1 I I X — 1 Z' —A' — l >

Gmà = ¿’<N'Z'|/“î|A7><ZÂ —lOOlZÂ—1 Z'0> 
ri

[ 2 l + 1 y
2 ï +1 a'az'z al'A'alA A(k)ôr I X—l Ak\l X—ll' A')

+ B (k) ô , _i ô i< I X — 1 A k+ 1 \I X— 1 l'A' >

— C(k) ô 1Ó y_i_<lX— lAk— 1 I IX— 1 l'A')
’ O ■2-z ’ o

A (¿)-2d'< IX— 1 A k IX— 1 l'A') 

+ B(À)pz(Z' —A') (/' +A' + 1)<ZÂ — IA k+1 I IX — 1 Z'Z' + l >

— C(k) /(Z' ++') (/'—A' + 1)<ZÂ— lAk — I A —1 l'A'—l >]

(36)

(36a)

(36 b)

Dan. Mat.Fys.Medd. 29, no.16. 3
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and where in turn
a (>) = i/'K-

Il (V) = |/(A-

- V2 (36 c)

(36d)- 1’) (Â--- V ---- 1 )

CO) = |/(A-F v) (Å + V — 1) (36 e)

k = K’ — K (36 f)

q=—K' — K. (36 g)

For Z = 1, as pointed out above, we can easily handle the 
last term of (27b) and incorporate it in the first term. All the 
expressions derived for z > 1 are then valid if gs is replaced by 
(9s — 9r) an(1 9i by (9i — 9r) everywhere.

For Ml transitions within one rotational band, equations (36) 
simplify greatly, and one obtains

Gy/1 = (g_Q — 9i<) (37a)

Further, Z>A/1 is different from zero only if £? = /< = -. (For this 

latter case we denote byi{ by Z?o|/2 and GAil by Go.) One has

—! (& — '//<) «H) + (9i~ 9i<) y \ I (I + l)«zo«zi 1- (37 k

9.0 — 9n 1 1 1 I
file reduced transition probability for a transition of this 

kind from a level /' + 1 to a level V (both belonging to the same 
rotational band) has then the simple form

(37 c)

For a rotational band with Q = -, we have given expressions 

for the four measurable quantities a, g, G’o, and Z?o in (19), (25), 
(37 a), and (37 b), respectively. As the dependence of the internal 
wave function on all these quantities is contained in the expressions 

and 5? [// (Z + 1 ) «/o a/i> it is apparent that between a, [i, 
~T i
Go, and Z?o there must exist relations that are independent of the 
nucleonic structure.
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We have already found such a relation between a and g for

7 = 72 = Æ = - and odd parity, in which case formula (26) holds.

One can further for this case derive the second relation

2 b0G0 = Go — 2 (g¡ — gR) a + gs — 2 gi + (38)

For the case I = Q = 
responding relations are

K = two cor-

Go = 3 /z — a 0, — gR) —-gs + gi — 2 gR

and

3 + « (& — 9r) + Tgs — gi — gR •

(39)

(40)

For the case I Q — K = -, one can also establish relations 2
of the same kind as (39) and (40).

The radial matrix element < N'l' | rz | Nl ) is given by the 
formula*

< N'l' r}-1 Nl > = F(n + l)F(n +1) 
r(n + i — V + r(n + t — / + 1)

F(/ + cr + 1)
o ! (n — cr)! (nz — a)! (cr + v— n)! (a + v' — n')l ’

where

„ = l(V-l)

n' = l(.V'-0

»' = !(/-/' +A)

(41a)

(41b)

(41c)

(41 d)

* See, e. g., P. Morse and H. Feshbach, Methods of Theoretical Physics, 
McGraw-Hill (1953), p. 785. The extra phase factor appearing in this reference 
is due to the fact that | ~ (—)" | -^’Ohere- Formulae (11 a-e) are given
from (41) for 2. = 2.

(41)

3*
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t = 1(! + l' + Â + 1), (41 e)

and where the condition on the summation variable a is

n n — V
> a >

n n — v'.
(42)

This means that cr has to be smaller than or equal to the smallest 
of n and n etc. If this condition cannot be fulfdled by any a, 
the integral vanishes. An equivalent necessary condition (ex
pressed in N, I, and z) for the matrix element of rz to be different 
from zero can be formulated as

/ + Â >/'>/ — Â (42 a)

N + Å> N' > N — Å. (42 b)

e. Determination of ft-values for beta transitions.

As it is the purpose of this paragraph merely to illustrate the 
application of the strong coupling wave functions in the field of 
beta transitions, we limit ourselves to considering only allowed 
transitions and a select group of forbidden transitions, namely 
those which imply a parity change of (—) ù7‘rl (with I # 0). This 
latter group is of a pure Gamow-Teller type.

The treatment of /^-transitions is similar to that of y-transitions 
and it is useful to introduce the concept of reduced transition 
probability*  defined in analogy to (28)

DP(zi) = rM'K'\^F{n,^\Q,IMKy\2. (43)
GT GT

Here (n,/z) is the Fermi respectively the Gamow-Teller 
GT

transition operator, and n is the degree of forbiddenness, 
n = d/— 1 .

The comparative half lives or the ft-values can now be 
defined in terms of these reduced transition probabilities.

See BN, chapter VIII.
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For allowed transitions we can write

f„l = Bg [<1 -x)fiF(O) + .t/Jgt(0)]-1, (44)

where t is the half life, f0 the integrated Fermi function for allowed 
transitions, g (1—x)1/2 and gxx>2 are the Fermi and Gamow- 
Teller coupling constants, and the constant Bg is given as

B9

2 %3/i7//z 2
g2 m'(! ei

(45)

For forbidden transitions of the particular type considered 
here (parity change = (—)' + 1 etc.) one has

/„/ = [xZ)GT(n)J \ (46)

where fn is the integrated Fermi function corresponding to the 
order of forbiddenness n [for definition and normalization see 
BM (VIII.6)].

It turns out that DGT (n) has a structure very similar to the 
reduced transition probability for a y-transition of the magnetic 
multipole type with A = n + 1. The corresponding operator is 
defined as

= SWZ’„-7pW + ,>'. + 1/1(#rft)] r'i, (47)

where
4 ti 2n + 3l1/2 [(n + l)!]2/mcin 
(2 n + 3)1 J ÏT+Ï 'T/ (47 a)

In general the sum over p is to be taken over all particles involved 
in the transition. We restrict ourselves, however, to transitions 
between odd-A nuclei with only one unpaired particle which 
then undergoes the ^-transition. t+ and t_ are the isotopic spin 
creation and annihilation operators, transforming a proton into 
a neutron, and vice versa.

By formally putting gs = 1 and (p = gR = 0 in (27 b) we 
obtain exactly the above expression apart from a multiplicative 
numerical factor and the isotopic spin operator. Making this 
formal change we can then use formula (36) of the preceding 
paragraph for calculating DGT(n). Thus,
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(Zí) = S (ii)21 1 2 zi + 3
4 4.7

• I < I n + 1 K K' — K In + 1 /'A' ;

+ ßn + 1 (-)r + K' + \ K -K'-K I / n + 1 I' - A" > |2 !

(48 a)

where
(48 b)Vn + 1

(48c)

case of mirror transitions, this simplifies toI7or the

where
9 (48e)

9 (48 f)

^7 (0) = |</1 2yb (48

|/ 2 f/Z0 ^.Q, 1/2 1/2 •

Finally, in this same case, the Fermi part 7)F(0) is simply

7Jf(0) = > I < Q, IM'K I r'l I Q, IMK> |2 = 1. (49)
M'

Collecting the 
odd-A nuclei

terms, we can write for mirror transitions in

1 +/ii(-)/ + 1'2|/2(l + l (50 )

where Bg is given by (45).
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V. Appendix A.

Use of an Alternative Representation.

In the diagonalization of the Hamiltonian (2), cross terms 
with different total quantum number N have been neglected. It is 
possible, however, to obtain an improved solution by making 
a small change of representation and in this manner to exhibit 
in a simple way the effect of the neglected non-diagonal terms in Ar.

Starting from (2) and (2 a)

H = H0 + CUs + Dl (A 1)

Ho =a-^y'2 + z,¿), (Ala)

we make a slight parameter change and define e and a>0(£), 
differently from Ô and <z>0(0), as

(A 2 a)

(A 2 b)
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The following relations hold between the old and the new
parameters

e = <5 + 1(52 + O(ô3)
6

(A 3)

co0(e) = ¿o0(ó(£)) 1 — 1 e2 + O(e3)
9

+ le2+O(£3) (A 4)

We further perform a coordinate transformation

, ,1/^x

f = X I7 —

Ho is then separable in £, t] , £

where
Ho — Hç + Hfj + H--,

Hi = + etc-

(A 6)

(A 6a)

For later use a note should be made at this point that a repre
sentation that obviously makes Ho diagonal is | nt ) | n„ > | nt >, 
where | nç > is defined by

Ht | > = ( 7+ + -\ Îî Mx I . (A 7 )

We proceed, however, to split Ho in a manner analogous 
to (7)

H0 = H0 + He, (A 8)
where

n„ = + e2) (A 8 a)

(A 8b)
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and
o2 = £2 4- r/2 + C2-

In conformity with the new coordinates £, r¡, £ introduced 
it is useful also to introduce an operator I, defined analogously 
to 7 as

etc- <A9>
(We denote the component by (lt)r instead of (lt)ç to emphasize that 
the directions of the new coordinates coincide with the old ones.)

• °We now introduce a representation which makes Ho diagonal 
_2 _2

together with (7,)z and lt , sz and s . The eigenvalues of (7Z)Z and 
_2
I, are denoted as At and I, (lt + 1).

Thus,

H0\NtltAtZ> = hco0l(-A^+62)\NtItAt^

- IM + -J wo I •
(A 10)

We rewrite (A 1 ) in the form

where

and

H = + Hpert,

H, = Ho + He + Clt -s + irf 

Hpert = C(7-7z)-s + L>(/2-6).

(A 11)

(Alla)

(A lib)

By using the identity

d2 d2 . d2 
d£2 + 'dr¡2~¿d£2 = 1 [A , [A , £2 + r¡2 — 2 C2]]

o
and exploiting (A 10), one can show that

ov,’z;j;2" i hJn,

= t>N N.< n,/;42-11 £/><»„ (F + 2 f2) I
t < «3

(A 12)
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The fact that He has vanishing matrix elements between 
states of different Nt can also be seen from (A 8b), (A 6a), and 
(A 7), remembering that the | A) lt At >-vector is a particular sum 
of J nt y J ) I nt ) product vectors with nt + n^ + nt = A).

It follows now that Ht has the same matrix elements in the 
I A)ltAt£ ^-representation as H has in the | A7/l¿7 >-representa- 
tion apart from, first, the change of parameters (e and co0(e) in 
the former representation and <5 and co0(0) in the latter one) and, 
secondly, the fact that the matrix elements of Ht between states 
with Nt differing by two vanish identically in the | Nt l(At X ^repre
sentation.

The next step is to investigate the effect of the ffpert-term. The 
three /-components l+ (= l__ ( = lx — il,,), and I. may
be transformed as follows

and where the operators f+ and /L can be conveniently written
in the form

(A 14a)

/L = I [J, + f (f-<»/)] = . (A 14b)
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Here U2Í the normalized spherical harmonic of order 2,1, 
expressed in the angles of the coordinate system £,??, C •

From (A 10) and (14a, b) one finds

Next, using (13a, b) and expanding in powers of e, one can 
show that

H,)ert = + £2H2 + • •
where

+ fs. ) _1 ö ' (/,)_ f,. + f_ </,)+ )

and
= 16C{ + r)(f+s- + f-s+) j

j co- (o+ + f-f--[(O-A- + r-(o+] j •

(A 16)

(A 16a)

(A 16 b)

Now it follows from (A 15) that the matrix elements of eHx 
between states of the same ATZ vanish. On the other hand, eHx 
causes a coupling in the | 2VZZz/lz2?^-representation between states 
differing by two in their 2Vrvalue of formally a very similar 
kind [cf. (A 15) and (7 b)] to the coupling caused by H() in the 

2X7/127^-representation between the 2V and AT + 2 shells. An 
estimate of the sH1 coupling terms shows, however, that their 
order of magnitude is only 1/10 of the coupling terms, or
something similar to the ratio of the matrix elements of the l-s- 
and /2-terms to the matrix elements of Ho.

The second order terms in (A 16) amount only to the order 
2

of a per cent of the total ~l-s- and I -terms and arc therefore 
negligible.

By interpreting the representatives Az p listed in Table I, as 
being representatives A¡ j of eigenfunctions in the | ArzZz/lz27>- 
representation, one should thus obtain an improved approxima
tion.

The uncorrected more simple eigenfunctions are, however, 
used in the main part of this paper since they are sufficiently 
accurate for most of the applications. Thus, the matrix elements
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for operators as y and a and those involved in M 1 transitions, 
which all contain exclusively I and s, are affected only to the order 
g2 by the change in the wave functions. Moreover, the correction 
term of this order involves a small coefficient [cf. (A 13 d)] and 
is therefore of little significance. The situation is somewhat 
different for operators like the quadrupole moment and E‘2 
transition operators, and in an estimate of matrix elements of 
these quantities it may sometimes be important to use the im
proved representation.

Finally, it may be added that, apart from the smallness of 
//pert, it is even questionable which Hamiltonian H or Ht best 
describes the nuclear conditions.

The /-s-term for the nuclear case is modelled after the spin
orbit coupling term for an electron moving in an electrostatic 
field. 'Phis term is of the form s-(t»Xgrad V) which only for an 
isotropic potential reduces to l-s. For a deformed oscillator 
potential, the difference between such a coupling term and the 
/•s-term is of the same order of magnitude as the difference 
between l-s and lt-s.

_2
Similarly for the / -term, which is thought of as a correction 

at larger distances for the too fast rising of the oscillator walls, 
there is no reason to assume a spherically symmetric correction 
when the oscillator potential itself becomes eliptically deformed.

Thus, it appears that the effect of Hpert lies entirely within
2

the range of ambiguity in the definition of the l-s- and / -terms 
for the deformed nucleus.

Appendix B.

Asymptotic Solutions in the Limit of Very Strong Deformations.

The notation and parameters used in this section are identical 
with those employed in Appendix A.

We first consider the Hamiltonian Ho (Ala) containing only 
kinetic energy and oscillator field terms. It follows from (A6, 
A 7) that the energy eigenvalues corresponding to //0 are of the 
form
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¿o — í nç + I 4" 4- 4“ 1 ,

which can be rewritten in terms of the deformation parameter e 
[cf. (A 2 a, b)]

(Bl)

where n± = + n^. The energy eigenvalues in units of h w0 (e) ,
plotted as functions of e, are then straight lines. The corresponding 
eigenfunctions are | nt > | nr. > | n> >.

Such a level characterized by n^ and n± is degenerate to 
the order n± + 1 (number of combinations of and n„ that 
fulfil 4- nr¡ — n±). To this degeneracy is then added the spin 
degeneracy.

We further introduce linear combinations | n±A > of base 
vectors | n^ > | n7¡ > (with nç + n„ = n±) such that

[(Ze)« — A] I ^4 > = 0.

The vectors | n^ > | n±A ) | 27 > form a complete set, and Ho 
is further diagonal in such a representation. Here /I = ± 1 , 
± 3, . . ., ± n± if n± is odd, and = 0, ± 2, . . ., ± n± if n± is even. 

_ _ _2
We now consider elements of lt-s and lt in this representation. 

As before, we can have coupling terms only between states of the 
same Q and N (= + n±). Apart from diagonal elements, non
vanishing matrix elements of ~lt-s occur only between states 

o
differing by one unit in A and n±. As regards lt, this operator is 
diagonal in A and has non-vanishing elements only between 
states with n± equal or different by two.

The diagonal elements of lt’s are given immediately as

< nç nL A X \ lt-s I nç n± A X ) = /I 27. (B2)

Employing operator relations of the type used in Appendix A, 
one can show

\ nç n± A S I 72 I nç n± A X > = H2 4~ 2 n± 4~ 2 rt^ 4- • (B 3)

Figs. 4 a and 4 b give a comparison of the energy levels of the 
TV = 5 shell by perturbation treatment and exact calculation, for
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the largest deformations calculated in the numerical treatment. 
The level group («) corresponds to the harmonic oscillator levels 
(Bl) while (ß) employs the diagonal terms of (B2) and (B3). 
Finally (y) shows the exact levels.

These asymptotic solutions corresponding to the ! lyAZ)- 
states may be of interest in providing new approximate selection 
rules for particle transitions in this region of deformation, con
nected with the occurrence of the new constants of the motion 
7)± and X.

Appendix C.

The Total Energy as Eunction of the Deformation Parameter.

We shall here evaluate the expectation value of the total 
energy Hamiltonian .£), defined by (15), employing the notation 
and results of Appendix A, i. e. taking into account the effect 
on the wave functions of the coupling between shells characterized 
by different .V-values. We write

The eigenvalues of W, are just the calculated single-particle energy 
eigenvalues Et. Separating out /-dependent terms of the difference 
F¿ — T¡ we (*an  write

(CO

where in the notation of Appendix A (dropping the index i)

\V = h wx
d2 _ d2 d2
d£2 dr/2 1 + h w: — + C2 d£2 J (Cl a)

U = Cl-s + D T - C lt’si I) (Clb)

Noting that the single-particle wave functions can be written 
as linear combinations of | nç > | )> \n^y, with the require
ment nt + — Xt, it follows immediately from the virial
theorem for one-dimensional harmonic oscillators that

< Wf> = 0. (C2)
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Figs. 4 a and 4 b further demonstrate that Ui is approximately 
diagonal at the largest deformations with respect to the wave 
functions which are appropriate at these deformations. The ap
proximate expectation values of can be calculed from (B2) and 
(B3). To the extent this approximation is valid, is independent 
of the deformation.

Using the equivalent of formula (13) (employing £ instead 
of ô) and formula (A4), one finally obtains *»  ** 

(£) = £ jzL 4- -j | 1 T - £2j -j- xi'i (e)| + >. (C 3)

The equilibrium deformation Eeq is then obtained by solving

W(£) = ()
ÔE

The relation between the deformation parameters £ and ô, 
employed here and in the main text, respectively, is given by (A3).

* A correction to (C3) is obtained by considering the diagonal terms of the 
neglected Coulomb interaction between the protons. This effect will tend to 
increase the equilibrium deformation. For, e. g., a homogeneously charged el
lipsoid of an average radius Ho one has to second order in e

3ZV/ 4 \E ,=------1-----------e2 .
<>z u Eo \ 45 /

(Cf., e. g., N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).)
The independent term is negligible for the lighter nuclei, and even for nuclei 

around A = 200 it does not amount to more than 10 per cent of the “surface 
tension” term (second order term) in (C3).

** Note added in proof: It is possible to estimate the effect of the residual 
interactions by employing the two-nucleon model used by A. Bohr and B. Mottel- 
son (I)an. Mat. Fys. Medd., in press). These interactions tend always to reduce 
the deformation from that calculated for completely independent particle motion 
as above. The effect becomes less important for increasing deformation. For 
£ = 0.3 and a strength of interaction v = 0.3, as defined in the above reference, 
the equilibrium deformation is reduced by 10 per cent. (Private communication 
from B. Mottelson.)



Tables.

Table I. Eigenvalues and Eigenfunctions for the Deformed Eield.
X = 0 Í2 = I

eigenvalue: r 0, eigenvector: | 000 + )>.

X = 1

eigenvalue: r Hl +>•eigenvector :

?; = — 6 — 4 — 2 2 4 6

2 — 3.000 — 2.333 — 1.667 — 0.333 0.333 1.000

X = 1

base vectors : | 110 + )>, | 111 — )>.

'/ -6 — 4 — 2 2 4 6

4
4.372 3.228 2.333 2.228 2.706 3.275

1.000 1.000 1.000 1.000 1.000 1.000
— 0.263 — 0.397 — 0.707 — 2.518 — 3.798 — 5.144

3
- 1.372 - 0.895 — 0.667 - 1.895 — 3.039 — 4.275

1.000 1.000 1.000 1.000 1.000 1.000
3.798 2.518 1.414 0.397 0.263 0.194

2
-1] — 2, eigenvector: 222+ >.eigenvalue :

?; = — 6 — 4 — 2 2 4 6

5 — 6.000 — 4.667 — 3.333 — 0.667 0.667 2.000



Nr. 16 49

base vectors: | 221 4- \ | 222 — >.
2

rj = —ti — 4 — 2 <2 4 6

2.000 1.895 2.228 4.035 5.198 6.424
8

1.000 1.000 1.000 1.000 1.000 1.000
— 0.500 — 0.781 — 1.281 — 2.851 -3.766 - 4.712

— 3.000 — 2.228 — 1.895 — 2.368 — 2.865 — 3.424
7

1.000 1.000 1.000 1.000 1.000 1.000
2.000 1.281 0.781 0.351 0.266 0.212

X = 2 ß =

base vectors: | 220 4-), | 200 4- | 221 —

7] = — 6 - 4 __ 2 2 4 6

8.719 6.379 4.368 ' 2.630 3.298 1.394

11 1.000 1.000 1.000 1.000 1.000 1.000
0.649 0.591 0.432 — 0.717 — 1.143 - 1.287

- 0.428 — 0.605 — 0.907 - 1.066 - 0.675 - 0.454

2.568 1.693 0.667 0.120 — 0.237 — 0.853

9 1.000 1.000 1.000 1.000 1.000 1.000
2.203 2.227 2.828 - 15.696 15.901 6.635
5.672 3.827 2.449 11.489 — 25.472 — 16.609

— 4.287 — 3.072 — 2.035 — 3.751 — 6.069 — 8.542

6 1.000 1.000 1.000 1.000 1.000 1.000
— 1.319 - 1.227 — 0.927 0.503 0.622 0.662

0.336 0.453 0.662 0.600 0.428 0.325

Tj — 7.2, eigenvector: | 333 4- )>■eigenvalue: r

= — 6 — 4 __ 2 2 4 6

10 — 13.200 — 11.200 — 9.200 — 5.200 — 3.200 — 1.200
Dan. Mat. Fys.Medd. 29, no.16. 4



50 Nr. IG

base vectors: | 332 + 3, | 333 — >.

7/ = —6 — 4 — 2 2 4 6

— 4.200 - 3.200 — 1.828 1.572 3.424 5.321
15

1.000 1.000 1.000 1.000 1.000 1.000
— 0.817 - 1.225 1.785 3.173 3.929 4.703

— 9.200 - 8.200 — 7.572 - 6.972 — 6.824 6.721
I J

1.000 1.000 1.000 1.000 1.000 1.000
1.225 0.817 0.560 0.315 0.255 0.213

base vectors : | 331 + 5, | 311 + )>, | 332 — )>.

r/ = —6 - 4 __ 2 2 4 6

3.058 1.614 0.483 0.381 2.091 3.967

19 1.000 1.000 1.000 1.000 1.000 1.000
0.574 0.560 0.473 - 1.816 2.300 — 2.322

— 0.601 — 0.829 — 1.178 — 1.225 — 0.737 — 0.513

— 3.054 — 3.124 — 2.765 - 1.129 1.319 1.491

16 1.000 1.000 1.000 1.000 1.000 1.000
2.137 3.280 11.837 2.543 1.585 1.416
3.703 3.421 5.599 — 2.953 - 3.590 - 4.460

— 9.104 — 7.590 — 6.819 - 8.352 - 9.872 11.576

13 1.000 1.000 1.000 1.000 1.000 1.000
— 1.262 — 0.917 — 0.408 0.204 0.303 0.356

0.458 0.587 0.685 0.514 0.412 0.337



Nr. 16 51
.V - 3 û = 1

base vectors : | 330 + \ | 310 + )>, | 331 — >, | 311 — )>.

r¡ — — 6 — 4 — 2 2 4 6

10.824 7.100 3.594 2.512 4.265 6.126

26 1.000 1.000 1.000 1.000 1.000 1.000
1.460 1.518 1.650 — 1.495 — 1.161 — 1.049

— 0.474 — 0.620 — 0.854 — 1.554 — 2.053 — 2.587
— 0.307 — 0.449 — 0.823 4.547 5.248 6.244

3.620 1.779 0.257 — 1.636 — 2.151 — 2.373

20 1.000 1.000 1.000 1.000 1.000 1.000
— 4.476 — 3.201 — 1.730 — 0.645 — 0.926 — 0.950
— 8.469 — 4.424 — 1.803 — 0.837 — 0.468 — 0.300
— 4.959 — 2.482 — 0.379 — 0.718 — 0.578 — 0.444

— 2.465 - 2.012 — 1.275 — 3.480 — 5.829 — 8.066

17 1.000 1.000 1.000 1.000 1.000 1.000
— 0.539 — 0.379 0.328 7.020 5.302 5.955
— 0.030 — 0.136 — 0.197 — 4.641 — 6.453 — 10.375

0.740 1.134 2.076 0.503 — 1.542 — 3.458

— 7.779 — 6.666 — 6.376 — 9.196 — 12.086 — 15.487

14 1.000 1.000 1.000 1.000 1.000 1.000
— 0.582 — 0.484 — 0.303 0.359 0.637 0.809

1.432 1.088 0.918 0.777 0.632 0.500
— 1.718 — 0.912 — 0.347 0.164 0.198 0.183

 9
-V = 4 O - -

4
13, eigenvector: I 444 + >.eigenvalue: r =

r¡ = — 6 -4 — 2 2 4 6

18 — 21.000 — 18.333 — 15.667 — 10.333 — 7.667 — 5.000

7
N = 4 ß = -

2

4*

base vectors: | 443 + )>, | 444 —)>.

T] = — 6 — 4 — 2 2 4 6

25
— 10.628 — 8.632 — 6.392 — 1.518 1.018 3.589

1.000 1.000 1.000 1.000 1.000 1.000
— 1.192 — 1.662 — 2.219 — 3.470 — 4.131 — 4.804

21
- 16.372 — 15.035 — 13.942 — 12.148 - 11.351 — 10.589

1.000 1.000 1.000 1.000 1.000 1.000
0.839 0.602 0.451 0.288 0.242 0.208



52 Nr. 16

base vectors: | 442 -j- >, | 422 4- )>, | 443 — )>.

.V -= 4 O = f

= — 6 — 4 — 2 2 4 6

— 3.373 — 3.871 — 4.087 — 2.217 0.277 2.838

31 1.000 1.000 1.000 1.000 1.000 1.000
0.552 0.558 0.517 — 3.610 - 3.561 — 3.352

— 0.809 - 1.081 - 1.451 — 1.201 — 0.757 — 0.547

— 9.282 — 8.360 — 6.780 — 3.855 — 3.470 — 3.008

27 1.000 1.000 1.000 1.000 1.000 1.000
2.465 5.272 90.857 1.119 0.946 0.914
2.918 3.646 33.064 — 2.532 — 3.127 — 3.773

— 15.045 — 13.469 — 12.833 — 13.628 — 14.506 — 15.530

22 1.000 1.000 1.000 1.000 1.000 1.000
— 1.034 — 0.611 — 0.232 0.127 0.200 0.245

0.531 0.610 0.607 0.451 0.380 0.325

base vectors : | 441 + )>, ¡ 421 + > , | 442 — >, | 422 — )>.

»7 = — 6 — 4 — 2 2 4 6

4.911 2.230 0.171 2.276 4.651 7.148

42 1.000 1.000 1.000 1.000 1.000 1.000
1.244 1.404 2.026 — 3.127 2.112 — 1.784

— 0.629 — 0.809 — 1.071 — 1.816 — 2.246 — 2.689
— 0.431 — 0.713 — 1.871 9.992 9.053 9.513

— 2.239 — 3.332 — 3.800 — 4.457 - 4.200 - 3.765

33 1.000 1.000 1.000 1.000 1.000 1.000
— 148.417 — 7.290 — 0.671 —■ 1.560 — 1.677 - 1.597
— 208.425 — 7.611 — 1.393 — 0.961 — 0.566 — 0.379
— 121.847 — 4.315 0.605 — 0.763 — 0.642 — 0.512

— 7.119 - 5.521 - 4.335 — 5.846 7.521 — 9.133

29 1.000 1.000 1.000 1.000 1.000 1.000
— 0.545 — 0.233 3.603 2.001 1.780 1.835
— 0.297 — 0.510 0.727 — 2.294 — 3.008 — 3.917

1.181 1.524 4.020 0.109 — 0.441 — 0.868

— 12.952 — 12.111 — 12.104 — 14.706 - 16.994 — 19.649

23 1.000 1.000 1.000 1.000 1.000 1.000
— 0.623 — 0.462 — 0.245 0.215 0.373 0.482

0.969 0.829 0.763 0.627 0.537 0.456
— 0.891 — 0.450 — 0.167 0.081 0.110 0.114



Nr. 16 53

base vectors : | 440 + )>, | 420 + >, | 400 + )>, | 441 — >, | 421 — >.

N = 4 .Q = |

r¡ — — 6 - 4 — 2 2 4 6

13.736 8.749 4.034 2.039 4.403 6.898

1.000 1.000 1.000 1.000 1.000 1.000
51 2.266 2.555 3.410 — 4.291 — 3.337 — 2.987

1.561 1.843 2.667 6.641 4.782 4.099
- 0.511 — 0.639 - 0.835 — 0.814 - 0.613 — 0.488
— 0.698 — 1.052 — 2.135 2.532 1.293 0.870

5.508 2.566 0.188 1.353 - 1.477 - 1.202

1.000 1.000 1.000 1.000 1.000 1.000
43 — 1.275 - 0.938 — 0.205 — 1.173 — 0.441 — 0.215

— 2.191 — 2.308 - 3.435 — 2.734 1.886 — 1.691
— 3.821 2.644 — 1.728 — 1.567 — 2.106 - 2.709
- 4.813 — 3.764 — 3.474 4.285 4.063 4.563

1.437 2.333 — 3.037 - 6.163 - 8.057 — 9.716

1.000 1.000 1.000 1.000 1.000 1.000
34 0.085 0.172 0.136 — 0.504 - 0.644 - 0.589

— 0.559 — 0.465 — 0.142 - 0.258 — 0.504 - 0.573
— 0.290 - 0.472 — 0.841 — 0.816 — 0.438 — 0.261

0.670 0.840 0.838 — 0.834 - 0.777 — 0.615

-6.733 — 5.465 4.165 — 7.293 — 11.045 — 14.793

1.000 1.000 1.000 1.000 1.000 1.000
30 6.922 — 17.873 — 9.735 3.961 3.743 5.130

- 9.733 20.639 7.376 1.714 2.139 3.283
10.840 — 17.270 — 5.376 — 2.728 — 4.024 — 7.444

— 5.800 4.197 — 3.760 0.947 — 0.933 — 3.180

- 12.474 11.584 — 11.753 — 15.296 — 18.558 — 22.587

1.000 1.000 1.000 1.000 1.000 1.000
24 — 0.868 — 0.554 — 0.263 0.267 0.531 0.758

0.659 0.302 0.071 0.055 0.181 0.318
0.791 0.892 0.914 0.853 0.770 0.658

— 0.491 — 0.408 — 0.221 0.187 0.295 0.325

X = 9

l'l — 18-5’ eigenvector: 555 + y.eigenvalue :

>/ o — 4 __2 2 4 6

28 — 28.500 — 25.1 77 — 21.833 — 15.1 77 — 11.833 — 8.500



54 Nr. 16

■v -5 " = I
base vectors: | 554 + )>, | 555 —

— —-6 — 4 - 2 2 4 6

40
16.500 — 13.636 - 10.616 — 1.322 1.105 2.139

1.000 1.000 1.000 1.000 1.000 1.000
— 1.581 — 2.065 — 2.599 — 3.745 — 4.341 — 4.946

32
— 23.500 — 21.698 — 20.050 — 17.011 15.562 - 14.139

1.000 1.000 1.000 1.000 1.000 1.000
0.632 0.484 0.385 0.267 0.230 0.202

N = 5 ß = -
2

base vectors: | 553 + )►, | 533 + )>, | 554 — >.

T] — — 6 — 4 — 2 2 4 6

— 9.480 — 9.049 — 8.384 — 5.218 — 2.054 1.176

48 1.000 1.000 1.000 1.000 1.000 1.000
0.497 0.490 0.433 — 4.295 — 4.425 — 4.149

— 1.056 — 1.361 — 1.732 - 1.139 0.888 — 0.636

— 15.523 — 13.722 11.256 — 6.609 - 5.512 — 4.366

41 1.000 1.000 1.000 1.000 1.000 1.000
2.442 5.528 37.895 1.145 0.870 0.814
2.098 2.726 10.044 — 2.723 — 3.210 — 3.741

— 21.397 - 19.628 18.760 - 18.573 - 18.834 19.210

35 1.000 1.000 1.000 1.000 1.000 1.000
— 0.871 — 0.461 — 0.168 0.096 0.155 0.194

0.537 0.569 0.535 0.408 0.354 0.309



Nr. 16 55

base vectors : | 552 + )>, | 532 + \ | 553 — >, | 533 — >.

= — 6 — 4 - 2 2 4 6

— 1.116 — 2.676 — 3.119 1.371 4.423 7.580

61 1.000 1.000 1.000 1.000 1.000 1.000
1.129 1.355 2.466 - 4.479 — 2.914 — 2.403

- 0.816 - 1.030 — 1.306 — 1.992 — 2.368 — 2.753
— 0.587 — 1.074 - 3.540 15.268 12.525 12.386

- 8.258 - 8.569 — 7.442 — 7.416 — 6.489 — 5.388

50 1.000 1.000 1.000 1.000 1.000 1.000
9.749 — 4.844 — 0.035 — 1.917 — 2.198 — 2.094

10.595 — 4.599 — 1.386 — 1.184 — 0.692 — 0.463
5.725 — 0.772 0.769 — 0.782 — 0.722 — 0.590

— 11.586 — 9.284 — 8.749 — 8.607 - 9 501 - 10.393

44 1.000 1.000 1.000 1.000 1.000 1.000
— 0.454 0.350 21.498 1.944 1.461 1.413
— 0.506 — 0.455 7.169 — 2.428 — 2.893 — 3.491

1.534 1.809 12.613 0.188 — 0.287 — 0.582

— 18.840 — 17.937 17.823 - 19.815 - 21.567 — 23.599

36 1.000 1.000 1.000 1.000 1.000 1.000
— 0.618 — 0.425 — 0.206 0.162 0.279 0.362

0.785 0.714 0.667 0.546 0.479 0.419
- 0.575 — 0.291 — 0.107 0.053 0.076 0.083



56 Nr. 16

base vectors : | 551 + )•, j 531 + /■, | 511 + )■, | 552 — )>, | 532 — >.

N = 5 <? = I

T] = — 6 — 4 __2 2 4 6

7.808 3.907 0.568 0.918 3.947 7.097

1.000 1.000 1.000 1.000 1.000 1.000
70 1.890 2.226 3.338 — 5.411 — 4.112 — 3.623

0.976 1.232 2.039 12.795 8.865 7.343
— 0.667 — 0.827 - 1.048 — 0.987 — 0.740 — 0.586
— 0.870 - 1.390 — 3.159 4.393 2.149 1.407

— 0.191 2.274 3.276 - 1.865 1.323 — 0.438

1.000 1.000 1.000 1.000 1.000 1.000
02 — 4.359 — 2.719 1.115 — 2.461 - 1.306 — 0.946

— 4.856 — 4.512 — 8.014 - 3.718 — 2.318 1.948
— 7.139 — 3.871 — 2.218 — 1.717 2.134 - 2.583
— 8.290 - 5.329 — 5.299 7.183 5.864 5.942

— 6.357 - 6.436 -— 6.565 — 9.164 10.375 11.357

1.000 1.000 1.000 1.000 1.000 1.000
52 — 0.048 0.071 0.052 — 0.823 1.124 — 1.077

- 0.500 — 0.339 — 0.046 — 0.235 — 0.483 — 0.566
— 0.467 — 0.708 — 1.099 - 1.036 — 0.578 - 0.351

0.841 0.953 0.707 — 0.790 — 0.822 — 0.678

— 11.233 — 9.299 — 7.877 - 10.230 12.980 - 15.877

1.000 1.000 1.000 1.000 1.000 1.000
46 2.985 13.310 141.387 3.477 2.431 2.483

— 5.559 — 17.369 — 85.487 0.887 0.858 0.997
4.330 11.111 59.345 — 2.665 — 3.114 — 4.047

— 1.922 0.032 74.877 0.874 — 0.423 — 1.205

- 17.727 16.931 —17. 216 — 20.692 — 23.635 - 27.126

1.000 1.000 1.000 1.000 1.000 1.000
37 — 0.754 - 0.475 — 0.229 0.214 0.399 0.546

0.546 0.211 0.043 0.027 0.081 0.138
0.780 0.810 0.794 0.701 0.631 0.555

— 0.474 0.337 — 0.161 0.116 0.180 0.205



Nr. 16 a /

N = 5 ß = 1
base vectors: | 550 + )>, | 530 + )>, | 510 + >, | 551 —)>, | 531 —| 511 —)>.

1 V = — 6 - 1 — 2 2 4 6

17.207 10.952 5.017 3.162 6.118 9.237

1.000 1.000 1.000 1.000 1.000 1.000
2.944 3.426 4.884 — 4.742 — 3.082 — 2.542

A 3.717 4.688 8.018 6.313 3.072 2.252
- 0.558 — 0.681 — 0.857 — 1.391 — 1.720 — 2.061

1.148 - 1.723 — 3.469 8.472 7.414 7.644
— 0.632 — 1.081 — 3.043 — 23.071 — 16.614 — 15.753

8.305 4.175 0.577 — 2.149 - 1.654 — 0.781

1.000 1.000 1.000 1.000 1.000 1.000
71 - 0.069 0.327 1.517 — 3.818 - 2.730 — 2.359

— 2.803 — 3.133 — 4.467 3.716 2.449 1.981
— 2.853 — 2.132 — 1.506 — 0.822 — 0.606 — 0.469
— 5.438 — 4.780 - 4.972 2.074 0.780 0.420
— 2.826 - 2.665 — 2.914 2.656 1.431 0.993

0.663 - 1.195 1.835 - 4.868 - 6.961 — 8.308

1.000 1.000 1.000 1.000 1.000 1.000
63 0.743 1.011 2.203 — 1.007 0.082 0.438

— 0.683 — 0.652 - 0.455 — 4.445 - 2.549 — 2.161
— 0.402 — 0.559 — 0.768 — 1.545 — 2.077 — 2.735

0.384 0.310 — 0.524 4.172 3.179 3.313
0.681 1.157 3.480 0.659 1.207 1.649

— 5.968 - 6.278 — 6.309 — 10.324 — 13.537 — 16.571

1.000 1.000 1.000 1.000 1.000 1.000
53 — 5.341 — 2.350 — 0.424 — 0.092 — 0.353 — 0.303

3.586 1.279 0.121 — 0.085 — 0.464 — 0.622
— 7.107 - 2.545 — 1.091 — 0.946 — 0.499 — 0.262

0.251 - 0.040 0.401 — 0.678 — 0.887 — 0.735
3.619 0.691 — 0.184 — 0.153 — 0.305 — 0.299

— 9.867 — 7.850 — 7.135 — 11.269 — 15.732 — 20.742

1.000 1.000 1.000 1.000 1.000 1.000
47 — 0.482 0.068 4.020 15.520 5.093 6.911

0.138 — 0.175 — 1.629 7.570 4.087 6.789
- 0.073 — 0.161 0.987 — 7.545 — 4.822 — 8.888

0.846 1.192 3.905 8.387 — 0.393 - 3.757
— 1.326 — 1.419 — 2.239 2.459 0.195 — 0.742

- 16.940 — 16.403 - 16.915 — 21.152 - 24.834 - 29.436

1.000 1.000 1.000 1.000 1.000 1.000
38 — 0.654 — 0.458 - 0.234 0.237 0.479 0.712

0.260 0.140 0.041 0.046 0.183 0.379
0.994 0.944 0.928 0.888 0.843 0.765

— 0.724 — 0.440 — 0.211 0.192 0.343 0.428
0.502 0.188 0.039 0.024 0.071 0.110



58 Nr. 16
N = 6 ß = L3

eigenvalue: 2r¡— 24.9, eigenvector: | 666 )>.

— — 6 — 4 — 2 2 4 6

39 — 36.900 — 32.900 — 28.900 — 20.900 — 16.900 12.900

11
A = 6 ß

base vectors: | 665 + >, 1 666 —>.

T¡ = — 6 — 4 — 2 2 4 6

— 23.128 — 19.476 — 15.721 — 8.035 — 4.139 — 0.221
56

1.000 1.000 1.000 1.000 1.000 1.000
— 1.955 — 2.432 - 2.938 — 4.002 - 4.550 — 5.103

— 31.672 — 29.324 — 27.079 — 22.766 — 20.661 - 18.579
45

1.000 1.000 1.000 1.000 1.000 1.000
0.512 0.411 0.340 0.250 0.220 0.196

9
A = 6 Æ

2
base vectors: | 664 + >, 1 644 + >, 1 665 —>.

T] = — 6 — 4 — 2 2 4 6

— 16.305 — 15.010 — 13.535 — 9.123 - 5.290 1.392

66 1.000 1.000 1.000 1.000 1.000 1.000
0.454 0.437 0.371 — 4.776 — 5.265 — 4.938

— 1.305 - 1.623 — 1.983 — 1.689 — 1.017 — 0.721

— 22.640 — 19.912 — 16.602 — 10.291 — 8.490 — 6.661

59 1.000 1.000 1.000 1.000 1.000 1.000
2.719 6.371 33.063 1.240 0.833 0.755
1.712 2.332 6.685 — 2.915 — 3.325 — 3.785

— 28.854 — 26.878 — 25.663 — 24.386 — 24.020 — 23.747

49 1.000 1.000 1.000 1.000 1.000 1.000
— 0.698 — 0.348 — 0.127 0.077 0.126 0.159

0.524 0.522 0.480 0.376 0.332 0.296



Nr. 16 59
N = 6 fi = Z

base vectors: | 663 + )>, | 643 + )>, | 664 — | 644 — )>.

r¡ — — 6 — 4 — 2 2 4 6

— 7.780 — 8.110 — 6.895 — 0.473 3.260 7.085

1.000 1.000 1.000 1.000 1.000 1.000
1.099 1.453 3.248 — 5.916 — 3.740 — 3.025

— 1.007 — 1.240 — 1.517 — 2.154 — 2.493 — 2.838
— 0.810 — 1.672 — 6.277 21.577 16.514 15.604

— 15.209 - 13.845 — 12.205 — 11.281 — 9.688 — 7.920

67 1.000 1.000 1.000 1.000 1.000 1.000
9.127 — 0.484 0.120 — 2.138 — 2.684 — 2.570
8.182 — 1.454 — 1.565 — 1.409 — 0.815 — 0.543
3.443 1.255 0.600 — 0.773 — 0.791 — 0.661

— 16.823 — 14.934 — 14.132 — 12.307 — 12.452 — 12.639

64 1.000 1.00Q 1.000 1.000 1.000 1.000
— 0.203 4.223 25.832 2.081 1.317 1.216
— 0.627 1.807 7.150 - 2.594 — 2.914 — 3.375

1.739 2.926 11.799 0.265 — 0.202 — 0.442

— 25.988 — 24.910 — 24.569 - 25.738 — 26.920 — 28.326

54 1.000 1.000 1.000 1.000 1.000 1.000
— 0.574 — 0.372 — 0.171 0.129 0.222 0.290

0.684 0.639 0.598 0.493 0.440 0.392
— 0.395 — 0.200 — 0.073 0.038 0.056 0.063



60 Nr. 16

base vectors : | 662 + >, | 642 + >, | 622 + >, | 663 — )>, | 643 — )>.

N = 6 ß = I

= — 6 — 4 — 2 2 4 6

1.230 - 1.526 — 3.467 — 1.132 2.568 6.381

1.000 1.000 1.000 1.000 1.000 1.000
1.758 2.180 3.683 — 6.606 — 4.943 — 4.302
0.796 1.074 1.971 20.348 13.926 11.254

— 0.826 — 1.008 — 1.239 — 1.151 — 0.856 — 0.676
- 1.104 — 1.867 -4.645 6.763 3.192 2.042

— 6.774 - 7.855 - 7.295 — 3.487 - 2.228 — 0.688

1.000 1.000 1.000 1.000 1.000 1.000
— 16.275 — 5.331 — 2.222 — 3.633 — 2.035 — 1.525
— 16.446 — 9.117 — 18.549 — 4.837 — 2.748 — 2.197
— 19.525 — 5.516 — 2.787 — 1.860 — 2.210 — 2.583
— 22.252 — 7.957 — 8.672 10.540 7.928 7.548

— 12.017 — 11.415 — 11.176 —13.048 — 13.595 — 13.901

1.000 1.000 1.000 1.000 1.000 1.000
72 — 0.078 0.047 0.058 — 1.004 — 1.509 — 1.477

— 0.408 — 0.204 — 0.035 — 0.196 -0.452 — 0.546
— 0.658 — 0.940 — 1.296 — 1.240 — 0.706 — 0.434

0.980 0.980 0.592 — 0.750 — 0.867 — 0.739

— 16.668 - 14.185 — 12.795 — 14.039 — 15.961 - 18.090

1.000 1.000 1.000 1.000 1.000 1.000
65 2.503 7.250 26.193 3.590 2.013 1.874

— 4.837 — 8.414 — 10.944 0.644 0.519 0.560
2.984 4.856 8.652 — 2.776 — 2.920 — 3.460

— 0.829 1.543 14.032 0.949 — 0.244 — 0.775

— 24.271 — 23.519 - 23.767 — 26.794 — 29.285 — 32.203

1.000 1.000 1.000 1.000 1.000 1.000
55 — 0.658 — 0.414 — 0.197 0.173 0.316 0.427

0.393 0.138 0.027 0.015 0.046 0.078
0.739 0.736 0.708 0.615 0.558 0.500

— 0.413 — 0.266 — 0.119 0.080 0.126 0.148
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base vectors: | 661 + \ | 641 + >, | 621 + )>, | 662—)>, | 642—)>, | 622 — •>.

N = 6 .0 = I

r¡ = — 6 — 4 — 2 2 4 6

10.761 5.658 1.285 3.270 6.868 10.631

1.000 1.000 1.000 1.000 1.000 1.000
2.571 3.121 4.948 — 6.377 — 4.023 — 3.253
2.483 3.385 7.184 14.197 6.316 4.398

— 0.698 — 0.842 — 1.033 — 1.533 — 1.819 — 2.115
— 1.376 — 2.161 — 4.760 12.321 9.797 9.519
— 0.698 — 1.344 — 5.119 — 49.751 — 29.946 — 25.832

2.006 — 1.194 — 3.531 — 4.003 — 2.832 - 1.320

1.000 1.000 1.000 1.000 1.000 1.000
— 1.497 — 0.651 1.655 — 4.837 — 3.465 — 2.970
— 5.024 — 5.355 — 5.770 6.958 4.680 3.719
— 4.106 — 2.721 — 1.564 — 0.987 — 0.724 -—- 0.560
— 7.338 — 5.968 — 5.286 3.693 1.462 0.817
— 3.381 — 2.952 - 1.072 3.571 2.008 1.393

— 4.789 — 5.332 - 4.347 — 6.198 — 7.446 - 8.179

1.000 1.000 1.000 1.000 1.000 1.000
0.607 1.054 3.209 — 2.192 — 0.817 — 0.376

— 0.714 — 0.674 1.207 — 5.616 — 3.098 — 2.487
— 0.553 — 0.728 — 0.825 — 1.679 — 2.075 — 2.532

0.396 0.124 — 1.140 6.616 4.690 4.435
0.899 1.749 6.218 0.389 1.150 1.504

- 11.500 — 10.961 — 10.573 — 14.358 — 16.884 - 19.214

1.000 1.000 1.000 1.000 1.000 1.000
73 — 10.085 — 0.974 — 0.132 — 0.345 — 0.737 — 0.738

8.500 0.511 0.012 — 0.138 — 0.485 — 0.652
— 12.091 — 1.431 — 1.153 — 1.114 — 0.646 — 0.360

1.047 0.682 0.508 — 0.659 — 0.893 — 0.779
4.543 — 0.432 — 0.155 — 0.104 — 0.223 — 0.237

- 13.717 - 11.779 - 11.794 15.386 — 18.894 — 22.914

1.000 1.000 1.000 1.000 1.000 1.000
68 — 0.279 1.453 11.255 8.624 3.440 3.212

— 0.030 — 1.143 — 4.328 2.757 1.747 1.977
— 0.185 0.605 3.513 — 4.475 — 3.609 — 4.429

1.012 1.625 8.045 3.864 — 0.089 — 1.321
— 1.508 — 1.752 — 3.188 0.796 0.130 — 0.153

— 22.962 — 22.593 — 23.240 — 27.524 — 31.011 — 35.204

1.000 1.000 1.000 1.000 1.000 1.000
57 — 0.628 — 0.424 — 0.211 0.205 0.395 0.562

0.273 0.131 0.033 0.029 0.103 0.196
0.865 0.840 0.819 0.751 0.699 0.636

— 0.546 — 0.340 — 0.160 0.132 0.225 0.278
0.302 0.108 0.021 0.012 0.033 0.051
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X = 6 <2 = I

base vectors: | 660 + >, | 640 + )>, | 620 + >, | 600 + >, | 661 — )>, 
I 641 — >, I 621 — >.

7/ == — 6 — 4 — 2 2 4 6

20.703 13.179 6.009 3.047 6.636 10.396

1.000 1.000 1.000 1.000 1.000 1.000
3.642 4.348 6.495 — 7.352 — 5.077 — 4.300
6.358 8.496 16.462 23.764 12.993 9.905
4.037 5.649 12.004 — 34.171 — 17.158 — 12.525

— 0.598 — 0.714 — 0.874 — 0.862 — 0.697 — 0.581
— 1.658 — 2.483 — 4.971 5.484 2.800 1.888
— 1.709 — 3.009 — 8.870 - 12.174 — 4.392 — 2.551

11.182 5.874 1.264 — 1.158 — 0.286 1.113

1.000 1.000 1.000 1.000 1.000 1.000
0.910 1.476 3.282 — 4.449 — 2.472 - 1.857

— 2.356 — 2.508 — 2.531 2.535 0.142 — 0.273
— 2.769 — 3.742 — 8.776 9.588 4.365 3.219
— 2.380 — 1.866 — 1.416 - 1.365 - 1.696 — 2.056
— 6.154 — 5.848 — 6.970 7.890 6.323 6.331
— 5.976 — 6.372 — 10.012 — 15.544 — 9.244 — 8.186

2.886 — 0.154 - 2.437 — 6.473 — 7.838 — 8.605

1.000 1.000 1.000 1.000 1.000 1.000
1.430 1.862 3.257 — 3.672 — 2.368 — 1.936

— 0.190 0.017 0.545 1.983 1.119 0.736
— 0.864 — 0.983 — 0.980 1.343 1.251 1.124
— 0.482 — 0.629 — 0.855 — 0.853 — 0.613 — 0.462
— 0.015 — 0.345 — 1.901 2.129 0.521 0.147

1.068 1.660 3.333 3.422 1.818 1.208

— 4.471 — 5.273 — 4.443 — 8.425 — 12.460 — 15.518

1.000 1.000 1.000 1.000 1.000 1.000
— 2.275 — 1.386 0.225 — 1.078 0.351 0.879

B — 1.051 — 2.133 — 7.489 — 6.249 — 2.765 — 2.021
3.089 3.545 7.386 — 3.250 — 1.945 — 1.712

— 3.756 — 2.417 — 1.749 — 1.581 — 2.058 — 2.746
— 2.325 — 2.538 — 5.201 4.927 2.906 2.621

2.694 1.631 — 0.539 — 0.011 1.419 2.034

— 10.435 — 10.131 — 10.266 — 15.117 — 19.353 — 23.659

1.000 1.000 1.000 1.000 1.000 1.000
— 0.163 — 0.148 — 0.235 0.113 — 0.113 — 0.121

74 — 0.235 — 0.036 0.060 0.009 — 0.256 — 0.482
0.296 0.032 — 0.026 0.003 — 0.116 — 0.268

— 0.322 — 0.685 — 1.033 — 1.021 — 0.626 — 0.299
0.853 0.885 0.418 — 0.493 — 0.892 — 0.816

— 0.653 — 0.493 — 0.115 — 0.125 — 0.416 — 0.495

Continued next page
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Continuation of

N = 6 ß = -
2

base vectors: | 660 + >, | 640 + >, | 620 + >, | 600 + >, | 661 —\ 
I 641 —>, I 621 — >.

i] = — 6 — 4 — 2 2 4 6

— 13.673 - 11.555 — 11.349 — 16.175 — 20.943 — 26.907

1.000 1.000 1.000 1.000 1.000 1.000
69 9.085 10.291 6.560 — 14.612 12.536 10.379

— 13.400 - 9.981 2.819 — 6.223 10.248 11.336
12.883 7.570 1.088 — 1.686 4.288 5.538
11.185 7.818 1.830 4.984 — 10.418 — 12.297
- 3.429 3.850 5.694 — 10.813 2.228 — 4.031

— 0.061 — 3.798 — 2.214 — 3.733 2.374 — 0.462

— 22.392 — 22.141 — 22.979 — 27.899 - 31.957 — 37.020

1.000 1.000 1.000 1.000 1.000 1.000
60 — 0.658 — 0.432 — 0.216 0.217 0.436 0.657

0.356 0.149 0.036 0.037 0.151 0.337
— 0.209 — 0.059 — 0.007 0.006 0.041 0.120

0.934 0.943 0.937 0.910 0.883 0.836
— 0.582 — 0.397 — 0.197 0.187 0.354 0.480

0.251 0.121 0.031 0.027 0.093 0.170
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Table I a. Eigenvalues for the Spherical Case (ó — 0).

Level designation in the 
spherical case r Label on level in Fig. 5

X = 0 sl/2 0.000

X = 1 P3/2
P1I2

- 1.000
2.000

2, 3
4

X = 2
Sl/2
d5l2
d3/2

0.000
— 2.000

3.000

9
5, 6, 7
8, 11

X = 3

P3I2
Pl/2 
bn 
f5/2

1.700
1.300

- 7.200
— 0.200

16, 17
26
10, 12, 13, 14
15, 19, 20

X = 4

Sl/2

rf3/2

a7/2

0.000
— 4.700

0.300
— 13.000

— 4.000

43
27, 29, 30
42, 51
18, 21, 22, 23, 24
25, 31, 33, 34

X = 5

P3I2
Pl/2
I7I2 
^5/2 
llll/2 
/l9/2

— 1.900
1.100

— 8.400
— 1.400

— 18.500
— 7.500

70, 71
A
41, 44, 46, 47
61, 62, 63
28, 32, 35, 36, 37, 38
40, 48, 50, 52, 53

X = 6

Sl/2 
d5/2 
d3/2

y-n 
'13/2 
'11/2

0.000
— 4.700

0.300
13.000

— 4.000
— 24.900

11.900

B

59, 64, 65, 58, 69

39, 45, 49, 54, 55, 57, 60
56, 66, 67, 72, 73, 74

X = 7 Ù5/2 — 29.400 58
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Table Ib. Eigenvalues and Eigenfunctions of the Shell = 4 
with the Parameter /t = 0.55 (added in proof).

eigenvalue: r — - r¡—15, eigenvector: | 414 ).

= — 6 - 4 — 2 2 4 6

18 — 23.000 — 20.333 —17.667 12.333 — 9.667 — 7.000

o
base vectors: | 443 | 444 — ).

// = — 6 — 4 — 2 2 4 6

25
— 12.628 — 10.632 — 8.392 — 3.519 — 0.982 1.589

— 0.643 — 0.516 — 0.411 - 0.277 — 0.235 — 0.204
0.766 0.857 0.912 0.961 0.972 0.979

21
- 18.372 — 17.035 15.942 — 14.148 -13.351 — 12.589

0.766 0.857 0.912 0.961 0.972 0.979
0.643 0.516 0. Ill 0.277 0.235 0.204

base vectors: | 442 — ), j 422 4- | 443— ).
9

rç = — 6 — 4 __ 2 2 4 6

— 5.119 — 5.644 — 5.891 2.948 — 0.447 2.111

31 0.705 — 0.625 — 0.521 — 0.179 — 0.228 — 0.257
0.458 — 0.455 — 0.485 0.972 0.964 0.959

— 0.541 0.634 0.702 0.152 0.137 0.119

— 10.702 — 9.435 — 7.619 — 5.741 — 5.390 — 4.948

27 0.139 0.016 — 0.138 — 0.383 — 0.316 — 0.266
0.659 0.805 0.860 — 0.211 — 0.207 — 0.188
0.739 0.593 0.492 0.899 0.926 0.946

— 16.479 - 15.221 14.790 - 15.611 16.463 — 17.463

22 — 0.695 0.780 0.812 0.906 0.921 0.929
0.596 — 0.381 — 0.159 0.102 0.167 0.211

— 0.401 0.496 0.515 0.410 0.352 0.302
Dan. Mat. l'vs. Medd. 29, no.16.
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base vectors: | 441 4- | 421 + ), | 442 — ), | 422 — ).

T/ = — 6 — 4 — 2 2 4 6

3.732 1.135 — 0.667 1.631 3.969 6.444

42 0.531 0.443 0.252 0.078 0.091 0.089
0.746 0.745 0.684 — 0.292 — 0.218 — 0.175

— 0.316 — 0.338 — 0.259 — 0.145 — 0.210 — 0.246
— 0.249 — 0.368 — 0.634 0.942 0.949 0.949

— 3.575 — 4.513 — 4.994 — 5.389 — 5.138 — 4.732

— 0.031 — 0.063 0.154 — 0.311 — 0.409 — 0.464
33 0.490 0.579 0.660 0.870 0.851 0.841

0.712 0.604 0.112 0.198 0.180 0.148
0.501 0.544 0.727 0.326 0.275 0.237

— 8.286 — 6.688 — 5.564 — 7.513 — 9.237 — 10.881

0.595 0.544 — 0.553 — 0.448 — 0.344 — 0.269
29 — 0.300 — 0.165 0.266 — 0.364 — 0.386 — 0.355

— 0.259 — 0.421 0.752 0.815 0.846 0.876
0.699 0.707 — 0.240 0.050 0.132 0.187

— 14.471 — 13.868 — 14.041 — 16.661 — 18.861 — 21.431

— 0.602 0.710 0.779 0.834 0.840 0.840
23 0.336 — 0.286 — 0.163 0.157 0.280 0.369

— 0.571 0.587 0.596 0.525 0.456 0.388
0.446 — 0.264 — 0.109 0.060 0.084 0.090
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base vectors: | 440 + ), | 420 ), | 400 + | 441 — ), | 421 — ).
2

7/ = — 6 — 4 — 2 2 4 6

13.130 8.188 3.551 1.811 4.142 6.614

0.298 0.248 0.159 0.091 0.140 0.170
51 0.745 0.725 0.670 — 0.478 — 0.531 — 0.556

0.537 0.559 0.596 0.833 0.810 0.796
— 0.144 — 0.149 — 0.125 — 0.068 — 0.079 —0.077
— 0.218 — 0.282 — 0.393 0.253 0.189 0.151

4.517 1.723 — 0.319 — 1.955 — 2.266 — 2.091

— 0.142 — 0.166 — 0.146 0.150 0.176 0.163
43 0.152 0.116 — 0.064 — 0.271 — 0.123 — 0.062

0.318 0.425 0.635 — 0.437 — 0.343 — 0.279
0.531 0.443 0.256 — 0.235 — 0.373 — 0.445
0.757 0.763 0.711 0.811 0.835 0.833

— 2.734 — 3.610 — 4.315 — 7.297 -9.189 -10.887

0.721 — 0.651 0.438 — 0.412 — 0.578 — 0.653
34 0.132 — 0.242 0.539 0.669 0.539 0.477

— 0.458 0.423 — 0.394 0.289 0.370 0.414
— 0.219 0.286 — 0.207 0.192 0.204 0.158

0.454 — 0.507 0.565 0.511 0.444 0.387

— 7.698 — 6.293 — 5.173 — 8.602 12.320 16.125

— 0.050 0.194 — 0.492 — 0.498 — 0.305 — 0.187
30 0.450 — 0.552 0.479 — 0.470 — 0.549 — 0.493

- 0.553 0.553 — 0.292 — 0.172 — 0.281 -0.289
0.628 — 0.574 0.664 0.707 0.702 0.741

— 0.308 0.151 — 0.036 0.047 0.181 0.299

— 13.815 — 13.275 — 13.676 - 17.224 — 20.301 — 24.111

0.608 0.671 0.720 0.743 0.723 0.695
2 1 —0.450 — 0.314 — 0.162 0.169 0.332 0.466

0.308 0.149 0.037 0.031 0.103 0.183
0.505 0.608 0.660 0.635 0.565 0.471

— 0.280 — 0.243 — 0.137 0.121 0.192 0.211

i
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Table II. Matrix Elements of the Coupling Energy between some 
Particular States with N Differing by Two. (The energy unit 

is xfico0.)

V = 2 r] == 4 7/ = 6

• <N = 4 P = |, #42 1 1 N - 6 P = #57>
0.006 0.015 0.017

• O = 4 P = 1 #51 \H¿ 1 X = 6 P = 1, #60> 
xnojo 2 2

0.007 0.013 0.018

Table III. Connection between Ground State Spin /0 and 
Decoupling Factor a.

Range of a '()

— 14 < a < — 10 11/2
— 10 < a < — 6 7/2
— 6 < a < — 1 3/2
— 1 < a < 4 1/2

4 < a < 8 5/2
8 < a < 12 9/2
12 < a < 16 13/2
__ __ __ __ __ __ __ __

Indleveret til selskabet den 10. december 1954.
Eærdig fra trykkeriet den 25. oktober 1955.
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The real and imaginary parts of the kernel for the fourth order vacuum polar
ization are calculated for all values of the four-dimensional energy momentum 
vector. If an expansion in powers of the square of this quantity is used, the 
first coefficient agrees with a result previously obtained by Baranger et. al.

I. Introduction.

In a previous paper, one of us1 has developed a formulation 
of renormalized quantum electrodynamics that is slightly 

different from the standard techniques used by most authors. 
This modification was introduced because of its convenience in 
discussions of general principles. It has been applied, for example, 
to a discussion, avoiding perturbation theory, of the magnitude 
of the renormalization constants.2 In the present paper, we wish 
to show that the new method can also be used with advantage 
in practical calculations in which perturbation theory is applied, 
and, as an illustration, the fourth order vacuum polarization 
has been chosen. Baranger, Dyson and Salpeter3 have com
puted those terms in this effect which are important in the Lamb 
shift. They present, however, only the result and very few inter
mediary steps of the calculation. On the other hand, we attempt 
to give a fairly detailed account of our calculations, and compute 
not only the terms of immediate experimental interest, but also 
the complete vacuum polarization kernel as a function of the 
four-dimensional momentum. As will be seen later, our calculation 
is simplified to a certain extent by the fact that we can use the 
result of an earlier calculation of the lowest-order radiative 
corrections to the current operator4 and thereby avoid some 

1 G. Kâllén, Ilelv. Phys. Acta 25, 417 (1952), in the following quoted as I.
2 G. Kâllén, Dan. Mat. Fys. Medd. 27, no. 12 (1953).
3 M. Baranger, F. J. Dyson, and E. E. Salpeter, Phys. Rev. 88, 680 (1952).
4 J. Schwinger, Phys. Rev. 76, 790 (1949).

1*
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ind

integrations. Since the main work involved in the calculation of 
a high-order effect is connected with the integrations over the 
so-called “Feynman auxiliary variables’’, a simplification at this 
point is not without interest. A further advantage of our method 
is that the questions of regularization1 and of the so-called “over
lapping divergences’’2 arc completely avoided. Finally, due to the 
application of the known expression for the current operator, we 
need not carry out any explicit mass renormalization in our 
calculations.

IL General Outline of the Method.

We start from the following formulae given in 1 :

■)|<>>= 72^X4 77(p2) + 7T(0)- e (p) 77(p2))j/z (p), (1)

II <P2) II = -P2
i,x da n (- a) 
Jo a (a + p2)

n(p2) = \ 2 2?<°LmI°>- (3)— 3 p“ '

The notation is the same as in I and will be used here without 
further explanation. If (he matrix elements of the current opera
tor arc expanded in powers of e,

the first non-vanishing contribution to the function 77 (p2) will 
be

1 W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949). The regularization 
of the fourth order vacuum polarization has been discussed by E. Karlson, 
Arkiv f. Fysik 7, 221 (1954).

2 A. Salam, Phys. Rev. 82, 217 (1951). For the special problem of fourth 
order vacuum polarization, the overlapping divergences have been discussed by 
R. Jost and J. M. Luttinger, Ilelv. Phys. Acta 23, 201 (1949).
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This expression can 1)0 computed easily and gives

(6)

X

r«'» (p2) _ 77(0) (0) =

/7(t)(p2) =

1 Cf., e. g., G. Kâllén, Arkiv f. Fysik 2, 371 (1950).
2 For the definition of particle numbers for these physical states, cf., e. g.,

G. Kâllén, Physica 19, 850 (1953).

(8)

n(" (p2) - O)/ >
<’(P) =

4/112

V

!
/1

fhe subsequent term in 
of order e4,

2 0b'/?\z^^z10> + complexconjugate. ( 10)
o p //z) = p

the expansion of the function II(p2) is 
and contains the following terms:

e2
1 2 7?

op p(z> p

j 2
T G (—p1 2 * —4 m2),

P

fhe expansion of the current operator has been computed ear
lier.1 From these results it can be seen that the term (9) gets 
contributions from states with one in-coming pair and one in
coming photon.2 These matrix elements are

(H)

fhe notation in the last expression is self-explanatory, except 
possibly for the quantities u(±)(ç). These are the normalized 
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plane-wave solutions of the free-particle Dirae equation. The 
index (+) refers to solutions with positive energy and the index 
(—) to solutions with negative energy. The vector e is the po
larization vector of the photon; V is the volume of periodicity 
and fi a small photon mass introduced to handle infrared diver
gences. In the computation of the function 77^ (P2)» we must 
“square” the expression (11) and sum over all states where 
7 + q + <]' = p. Using well-known properties of the functions u, 
and taking the limit V-*oe,  we can write this sum as an integral

1 Footnote 4, p. 3.

0 I jjP I q, q', k> <k, q, q | 0 > =
q + q' + k = p

e4 dk dq dq ô (p—q — q—k) ô (q2 + in2) 0 (q) ô(q'2 — in2) 6 (q)

X Ô (k2 + p2) 0 (k) Sp / , J iy(q + k) — m (iyq + m)\y ——------ —
\ r 2 qk— fi“

~7/.
iy (q' + k) + ni

iy (q + k) — in
~7k 2 qk-p2

The evaluation of this integral, which is the main task in our 
computation, is given in a later paragraph.

The first approximation to the current, has matrix ele
ments which connect the vacuum only to states with one in
coming pair. Hence, the expression (10) will reduce to a sum 
over states with one in-coming pair

77^ (p2) = y< v'X 9|yí?|()> + complex conjugate. (1
d P~ q + (i = i>

As has been mentioned in the introduction, the matrix elements 
< 0 | 7, 7'> have been computed by Schwinger.1 We write
his result as

- «(p2))] < •> I </• — ,T— (<?,< — '/<) [S(p2) + isi .S (p2)] <01 v>(<,)v><") I <7, </’>,
' 2 in f

(1
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(15)

l'he connection between the functions I< (p2) and 7? (p2), and be
tween S (p2) and S (p2), is the same as the connection between 
n (p2) and 77 (p2), which is given in Eq. (2). This is a conse
quence of the “causal” structure of the theory which says that 
the value of the current in one point x can depend only on the

(16)
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previous history of the system inside the retarded light-cone be
longing to .r. If Eq. (14) is written in .r-space, we get a relation 
of the form

< 0 I q, q', - \ d.r'F(.r .r') < 0 \j("} (,r' ) | q, q' >

(14a)

Causality requires F (.r) and G (.r) to vanish if .r0 < 0 and this 
gives, in a well-known way, the relations involving the Hilbert 
transformations. This oilers a new possibility of computing the 
matrix element under discussion by first computing the ‘’imag
inary parts” R (p2) and 5 (p2), which can be obtained by inte
grating over finite domains in momentum space and, subse
quently, computing the “real parts” with the aid of Hilbert 
transformations. Actually, a calculation of this kind has been 
performed. However, it has not been found to be much simpler 
than the standard methods for this problem. On the other hand, 
arranging the computation in this way is certainly not a more 
complicated procedure. We will not insist on this point here, 
but accept the results (14) — (18) as they stand. Consequently, 
the computation of the function 77^ (p2) will be reduced to 
simple algebraic manipulations of these expressions. The function 
0 (.r) in (16) is defined by the integral

Hereby it is supposed that the argument x is real, i. e. that 
4 m21 + — > 0. This will be sufficient at this stage. The integral
P

0 (.r) has many interesting properties which will be of some 
use in our calculation and that are discussed in the Appendix.

We now write the function 77æ (p2) as

-/<(<)) + S(0)] + 2 S (p2) .V (p2),
(20)
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where

A(P2)

X ó (g2 + ni2) O (q) ô (q'2 H- in2) O ( q') (qq' + in2).

The last expression is easily computed

e2 I 4 m2\
X (p2) = ~-2 H + — 0 (- p2 - 4 in2).

24 ?r“ \ p“ /
(22)

Collecting all these results, we have

l+ô2, 1+Ô
— log ----- - l(3-á2)(l +d2)(ø( l-á)

1 +»i

7l2 1 ,
- — 4- - lo

4 4
„2
r>

1 + Ó
1 — Ô

where

(24)

III. Discussion of the Part IT^ÍP2)-
The remaining part of the function /7 (p2), the integral (12), 

can be treated in the following way. We first compute the trace 
of the y-matrices. This is a straightforward calculation and the 
necessary work can be considerably reduced by performing first 
the summations over the indices p and 2. This can be done with 
the aid of the well-known formulae

yXyV1Yv2- ■ ■ ■ yr2„ + iy;. = — 2 yViii + i .... yVtyv¡ (25)

(26)

(23)
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Ehe complete trace can then be written

s = S(1) (<7> q) , S(i) (q'> q) . -S(2) (q, q') + s(2> (g, g)
(2 7Á—/i2)2 (2 q' k— p-)2 (2 qk — («2) (2q k — p2)’

5'<u (7, q) = — 32 [kq-kq' + 2 in2 qk + m2 q'k + m2 (qq' — 2 zn2)j,

S,2) (</, </) = —16 [2 (çg')2 —4 m2- qq' + 2 (kq + kq') qq' — in2 (kq + kq')].

Terms containing /z2 have been dropped in (28) and (29), as 
they will obviously vanish in the limit p —> 0.

Our next task is to compute an integral of the form

J — \ dk dq dq' ö (p— k— q — q') ô (ç2 + m2) ô (q'2 + m2) ó (k2 + /z2)

X Ö (q) 0 (q') 0 (Å-) F (qk, q'k, qq').

'l'his can conveniently be done in two steps. We first consider

/ (p'2, kp') = j¡ dq ô (ry2 + in2) 6 (q) ó((p' — q)2 + ni2) 6 (p' — 7) 

X F (qk, p'k — qk, p'q — q2).

This is a finite integral and we compute it in the special coordinate 
system where the space-like components of the vector p' vanish. 
We then obtain

W e now write this result in an invariant way, as

l(p2,kp') = X, ni2-F — p'2\o(—p'2- A1112),
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(33 a)

and treat the next integration similarly. The result is

J = \dkô(k2 + p2)0(k) I((p — k)2, kp + p2) =

(34)

Applying this technique to the integral (12), we get

To obtain these expressions, we have introduced the quantities 
y and z into (27), which becomes

The quantity A will stay finite in the limit p —*■  0 and can be ex
pressed in elementary functions. After some straightforward 
calculations we get the result
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A = p4 2d (5 — 3 ó2) (5 4- 6 d2 3 d4) log I. (39)
64 [ '1 — dj

The quantity li is a little more tricky to handle and the limit
/z -> 0 cannot be performed in all terms. We write (37) as

(40)

where
(41)

(42)

1-p!

(43 a)e

dependence on /z in /(z)

/ 1
/(z) = (44)

y

= t-1

- z2 d2 ( 1
(45)

dt
d

d
d2z2

o
y~

i
i

- £2)

logarithmic < 
following way:

-d2
-y
'-d2)

/.d2
?

VO

The term containing the 
can be split oil’ in the

1
i-yJ

£ 2
o 

y

d2
y
-d2

B(l) = 2/(1),

,-£d2 
ê ^y 
-l2z2

In the first integral, we make the transformation 
and rewrite it as

B = Ip4 (3
8 1

2 t-
r, o

d
1 — Z2 d2 1

♦ '()

u
2(!/a-
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The remaining integrations can now be performed without 
difficulty, and I (’) is found to be

The last integration in (42) introduces again the function 0(.r). 
With the aid of the formulae given in tin*  Appendix we can write 
the result as

(47)

log

^l)(P2) =

<5 (3 — ô2) 1
(48)

2

depending onthe termsthat

3
3 2

(49)

19
24

Adding 
cancel.

1 — à
1 + ó

part of the calculation is 
previous residís, we get

and (23), we find 
wav we obtain

+ - 7T2
4

e4
48 7T4 [8

(48)
In this

purely algebraic in

1 + ó ’
1 — Ô

9(1 ó).(1 + ó)2
4Ô

ó4 
ó2)3.

i ■loa logb 1 — <5 0

i m■ æg 
0

?'2)

+55 Ô*  -,)4
72

flic remaining 
nature. Collecting

U<39

Ä2\ 1 64
-2(3-á)10g(l-^

1 7 ó2) + -- (33 — 10 d2 + ó4) log 1
1 (1 7 b 1 - ó

ó2, 04log
(1

3 •> ■ ,- TT“ -p log
4

- 3 0 [ -9 00
\ 1+0/ \1 + 0/

. (i + ¿y iog «h 8 ó2
1 + (5 33 23 £, 23 1 c« / 3 d4\

log — ó2 - ó4 + -ó6 + - + ó- --
1 — Ô 16 + 8 16 6 ' 2 2/

/3 1 0 \ — / 1 -- M / 1 — ó \ % 2
-+ ó2- -ó4 4 0 - 4- 2 ø ------- +

V2 2 ’ 1 -F à \ 1 + ó/ 2
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((
e2

4 X
(49 a)

This is our expression for the imaginary part of the kernel (1). 
According to (2), the real part is obtained after a Hilbert trans
formation of this expression. This will be discussed in the next 
paragraph.

IV. The Real Part of the Vacuum Polarization Kernel.

So far, all our results are given as functions of the quantity ô 
defined in (24). It is therefore convenient to introduce a new 
variable of integration instead of a in (2). If we put

we get

VO

(50)

(51)

Not all the integrations in (51) can be carried out explicitly, with 
the result expressed by elementary functions or by the function
0 (.r). The new integrals which appear can be written in the
standard form

F (,r, y) = \ log 1 1 + xt | • log | 1 + yt |. (52)

vo

Ail the necessary integrals over the function 0(a) can be ex
pressed in terms of this F(x, y)

0(u) log (53)

In our final result, one of the variables in F (.r, y) has only a 
very small number (three) of different values. We therefore 
introduce the following three integrals, each of which depends 
on onlv one variable:
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The remaining integrations arc then straightforward, and not 
too time consuming. The result can be written as

13
1083 n I

+ <5 (3 1
1

I + ô 1, 1 + Ô
________ -U _ løcf
l-ô| 2 °|l~ó|

log
64 ó4

Ï^Fp.
+ (3 + 2 ô2 - ô4) F (ô2) + ¿ G (Ó2) — H (Ó2)

(57)

If this expression is expanded in powers of ó-1, the first non
vanishing term will be of order ô~~ . The same conclusion can 
also be obtained from a study of Eq. (51). If this expression is 
expanded in powers of 0~~l, we get immediately

77(1)(/>-)-/7<l)(0) = -^ÁzdzII^ÍÓ = :)+■■■■
d“i

(58)

The numerical coefficient of the first power of ó-2 has been 
computed from Eq. (57) and with the aid of the integration 
indicated in Eq. (58). The agreement of the results serves as 
a check on the calculations. In either way we obtain
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77<l)(p2)-77(L)(0) = 1 a2 82
ó2 TT2 81

j)2 a2 41 
nr 7t2 1 62

•••.(59)

This also agrees with the result obtained by Baranger, Dyson, 
and Salpeter.1

In Eq. (57) it is supposed that ó is real, that is, p2 is either 
positive or less than — 4 m2. For () < p2 < 4 in2, ö will be 
purely imaginary. In this ease we have to substitute arctangent 
functions for logarithms, according to the following rules:

4 arctang2-,7l2 0 ( 1 — Ó) *

(60 a)

(60 b)

ó
1
1

ó I ?i2
0/ 4

— 7l2 0 (1
4

64 ó4
i-52|3

log

a ret a ng 2 (2 a reta ng ?/)

1
+ arctg -

*7

64 r/4 
(î+?y

v CO 5Ç“7 sin (n.r) (60 d)

At the point p2 = — 4 m2, or à — 0, the expression (57) has a 
logarithmic singularity. If, during the calculation, the photon mass 
p had been kept different from zero in all places, our result would 
have shown a finite peak at this point. For practical applications, 
the weak logarithmic infinity will not be very harmful, as one is 
in general interested in convolution integrals involving the function 
I/(/r)— 77(0). In such expressions, the result (57) will be suf
ficient. For large values of | p2/m2 , our function behaves as 
log2 I p2/m2 . Fig. 1 gives a qualitative idea of the behaviour 
of the fourth approximation of the vacuum polarization kernel 
as a function of —p2¡m2. A figure of the corresponding behaviour 
of the functions 7/(0)(p2) and //’"’(p2)— 77((”(O) would be rather

1 Footnote 3, page 3.
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Fig. 1. Qualitative behaviour of the e4 approximation of the real and of the imag
inary parts of the vacuum polarization kernel.

similar to Fig. 1. The only qualitative difference would be that 
the function 77(0)(p1 2) vanishes at the point —p2 = 4 m2 and that 
the function 77(0)(p2)—7Ÿ(o)(O) has a finite peak at this point.

1 Cf., e.g., K. Mitchell, Phil. Mag. 40, 351 (1949) and W. Gröbner, N. Hof- 
reiter, Integraltafeln, Wien and Innsbruck, 1950.

Dan.Mat.Fys.Medd. 29, no 17.

Appendix.

In the following are given some formulae involving the 
function 0(x), defined in Eq. (19). Although practically all 
these expressions can be found in the literature,1 we add this 
summary for the reader’s convenience.

If X is real, our function is defined by

If we consider

(A. 1)

(A. 2}

2
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and make the variable transformation t = z , we get the funda
mental relation

An integration by parts in the definition (A. 1) will give another 
useful formula

2
or

0 (x) + ^ (- 1 x) — ——- 4~ log J X*  I - log I 1 + .r
o

(A. 5)

(A. 6)

Besides (A. 4) and (A. 6), we also mention the formula

(A. 7)

Another relation which has been of some use in the calculations
can be obtained in the following way:

0(.l) (A. 8)
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The transformation 1

0 (æ)  ø (  ,r) =

ti2 0 (— 1 — æ)1 4- t

i)
(D

log

log

+ f = - ---- — transfers this integral to
1 + z

.t2 l 
ï“L

7l2
4

 2x
1+z

(A. 9)

Using (A. 6), we can write (A. 9) as

0 (x ) — 0 (— x) =
/— — 7l'¿ 6 (— 1 — x) + 0 Í

(A. 10)

For complex values of x we can still define the function 0(x) 
as the integral (A. 1), making this definition unique with the aid 
of a cut along the real axis below the point —1. This function 
fulfils an equation similar to (A. 4),

0 (x) + øi-j = (A. 11)

where the definition of the logarithm is made unique by the 
prescription just mentioned. From (A. 11), we conclude that

(A. 12)

For X < 1, we have the power series expansion

(A. 13)

2*
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From (A. 13), it follows that

= 5 Sin-^ - ?/’(#)• (A. 14)

Numerical values of 0(.r) for real x can be obtained from the 
paper by Mitchell. The function if) (&) in (A. 14) has been 
tabulated by Clausen1.

1 T. Clausen, Jour. f. Math. (Crelle) 8, 298 (1832).
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It is shown that the matrix elements between radial eigensolutions in a Cou
lomb held of functions of the type rP exp (—qr) can be expressed explicitly by 
means of hypergeometric functions of two variables. The calculation is made 
separately for the non-relativistic and relativistic case. Recursion formulae con
necting the matrix elements are discussed and specializations to discrete-discrete, 
discrete-continuous, and continuous-continuous transitions are given.

I. Introduction.

In quantum mechanical perturbation treatments one often has 
to evaluate matrix elements between the eigenstates of the 

Coulomb field. In point of fact, this problem arose as one of 
the first in wave mechanics in connection with the calculation 
of the intensity of the hydrogen lines1.

Other cases where one encounters Coulomb matrix elements 
are, e. g., the theory of bremsstrahlung, photocffcct, internal 
conversion, Auger effect, and Coulomb excitation, when one 
includes the Coulomb interaction in the unperturbed Hamil
tonian.

In all these cases the integration over angles can be readily 
performed, giving the selection rules for the angular momenta. 
The remaining radial integral is generally of the type

00

\ Rt eqr rp R*  r2 dr,
Jo

where R is the radial eigenfunction in the Coulomb field be
longing to either the discrete or the continuous spectrum. For 
p = i 1, Gordon2 has given general formulae for discrete
discrete, discrete-continuous, and continuous-continuous tran- 

1*



4 Nr. 18

sitions. For a positive integer, p, the matrix elements may be 
obtained by means of recursion formulae. For p = — 2 and 
q = 0, one may use the equation of motion in the Coulomb 
field and reduce it to the case p = 1. For negative integers, 
p<— 2, the matrix elements are more difficult and have until 
now been calculated only in some special cases of discrete- 
continuous transitions.

It will be shown here that a quite general explicit expression 
for Coulomb matrix elements of the above mentioned types can 
be given.

Section II of this paper is concerned with the derivation of 
this explicit expression for non-relativistic matrix elements. In 
the next section, methods will be given by which it is possible 
to derive recursion formulae connecting different matrix elements 
of the aforementioned type. Section IV deals with the specializa
tions of the general formulae for the cases of discrete-discrete, 
discrete-continuous, and continuous-continuous transitions. These 
expressions embrace the earlier calculations of Gordon and others, 
corresponding to special choices of the parameters. In the last 
section, we shall give the exact expression also for the matrix 
elements with relativistic Coulomb wave functions.

The application of the method introduced here to the theory 
of Coulomb excitation will be given in a following paper3.

II. Non-Relativistic Matrix Elements.

The non-relativistic eigenfunctions of a particle of charge Zjc 

in a Coulomb potential —— are in spherical coordinates r, 0, 
r

(A, r) = Nx, , Y,_ (0, <p) ß, (,/A). (1 )

xV; t is the normalization factor to be specified later; F; (0, 
are the normalized spherical harmonics. The radial wave func
tion R, (r/Å) is a solution of the differential equation

d2R, 2 dR, 
dr2 + r dr = 0. (2)
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I and m arc the angular momentum quantum numbers. 2 is 
connected with the energy E and the mass m of the particle 
through

(3)

The K orbit radius a is given by

a = Z2me2, (4)

where Zt and Z2 have the signs of the charges.
The general solution of the radial equation (2) can be ex

pressed by the confluent hypergeometric function 1F1 or by 
the Whittaker function M through*

* For the definition of these functions, see Erdélyi et al.: Higher Transcen
dental Functions, McGraw Hill 1953, vol. I, chap. VI. This reference will here
after be quoted as HTF.

** HTF, vol. II, chapter X.

R;(rM) = (2r/A),e-r';l1F1(/ + 1 + Å/a, 2 I + 2, 2r/A) 
= (2r/A)-1( + Vi(2 r/A)

= (_l)i(_2r/A)-1 JWÂ/o,1 + ./,(-2r/A).
(5)

A discrete spectrum E < 0 occurs only when a is negative, 
and one finds

Â = — na. (6)

n is the principal quantum number which can take on the values 
I + 1, Z + 2, ...., while the radial quantum number n' = 
n — I— 1 takes on the values 0, 1, 2, . . . . In the confluent 
hypergeometric function of formula (5) the first parameter is a 
negative integer, namely —n', and the radial wave function may 
be expressed by a Laguerre polynomial**
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The normalization is given by the condition \ | y I2 cPr = 1, i. e.

2 _ i 
(2Z+l)!n2 I' (n —Z—1)! (7)

For the continuous spectrum, E > 0, one has

The “Sommerfeld number” 77 is defined as 77 — — — .
h v

In all scattering phenomena this is a very important number, 
since it measures the strength of the interaction. For « 1 the 
interaction is weak and in the limit the Born approximation 
applies. For 77 » 1 one may similarly in the limit use classical 
concepts5, .

The quantities k — nw/h and v are the wave number and 
the velocity, respectively, at infinity.

The normalization is here

.V, Â = e-fx |r(z + i + ^)| , 
’ (2Z + 1)!

which makes the so-called Coulomb wave function

Fi = M, Â kr Fi (— 7ât)

real with lhe following asymptotic behaviour

F) = sin (kr — I — ol — 77 log 2 kr). (10)

The Coulomb phase <rl is defined as

ol = arg F(Z + 1 + z 77).

We shall now consider the radial matrix element of the 
following type
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GO

( /?, (/■/;,.) r'>e-’X (r/Az) r*  dr.

* HTF, vol. I, chapter VI.
** HTF, vol. I, chapter V.

*** In the derivation, one has to put limits to the parameters so that the integral 
representation (12) has a meaning. Once, however, we have got the closed formula 
(14) this must be true for any values of the parameters.

The formula (14) is a special case of a general formula for the integral of pro
ducts of Whittaker functions given by A. Erdélyi7.

1'0
(11)

For its evaluation, we use an integral representation of the con
fluent hypergeometric function*

Hereby one obtains, carrying out the integration over r,

(2 /,•+ 1)! (2 lf+ 1)! (2/2i)i<(2/2*)^(Z i + // + p + 2)!(-+^+  ̂

4+i-M+i4H+i4H+i+ï)

,»t ,.l 2,. 2,. 2; 2;
\ \du du uli+a (1—u)li ~¿ul' + ~a(l—(1 — ux — uy)~(li + lr + p + 3} '
•o <’o

X =------------- 22jj... — y = _____ .

l/2¿+l/2/’ + y IM; + 1/V + Q

(13)

The remaining double integral is just one of the integral repre
sentations of the Appell function F2.**

/I 1 \ —(P+3)
y = Gí + ^/ + P + 2) ! æ ■ yf ! £ + + qj

-^2 Í + ^/ + P + 3, Z£■ + 1 + —, Z^ + 1 + , 2 Z£• + 2, 2 Z; + 2, æ, y V

\ a a /

By means of the functional equation for the F2 function 
(Appendix A5) one may give alternative formulae, e. g.,***
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with

T<b (I
/I 1 \~(P + 3)(_iy,+p+3 (il + Zz+/, + 2)^----gj

lf 4" p I- 3, -f- 1----- -, A + 1 + — , 2 Z¡ + 2, 2 // + 2, u, V
a a (Ha)

The generalized hypergeometric functions of two variables have 
been studied by several authors, the standard work on the sub
ject being the monograph by Appell and Kampé de Feriet8. 
Some of the properties of these functions are given in the Ap
pendix.

The radial matrix element is given by J through

(15)

III. Recursion Formulae.

One can derive a large number of recursion formulae which 
connect matrix elements with different values of /¡, If, and p. 
The general form of these recursion formulae can be determ
ined from a theorem^ which states that any five F2 functions 
of the form

F2 (« + ß + n2, ß' + n3, y + n4, / + n5, x, y)

(where nr are positive or negative integers) are connected by a 
linear relationship. The coefficients are polynomials in x and z/. 
Since the matrix elements are proportional to an F2 function, 
also five matrix elements of the form

yrp + n, q
Aili + n', y + n"

are linearly connected.
If the F2 function is reduced to an Fx function, e. g., in the 

case Z¿ = If i (p + 1), already four matrix elements are con-
t Appell and Kampé de Fériet (ref. 8, chapter I) state that this theorem 

holds already for four F2 functions, but this does not seem to be true.
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nected in this way. In the case where the F2 function is reduced 
to an ordinary hypergeometric function, three will suffice. Since 
the above mentioned theorem holds for three ordinary confluent 
hypergeometric functions jfj, three radial Coulomb wave 
functions of the type 7?/ + n are connected by a linear relation. 
Some of the recursion formulae for the matrix elements can be 
derived from these recursion formulae. One has, e. g.,*

l + Or/?,= +H'rRt = 2 (2 / + 1) r/2 
la dr)

(/+1)2-G/u)27- r
(2 Z+2) (2 7+ 3) 2 '

(16)

Recursion formulae for Coulomb matrix elements can now 
be obtained by considering the following expression:

( [x1+H'‘ + } + x2+Hlf + x3~H,f+i + a:rR* t dr.
Jo' z

For the moment we leave the constant coefficients x4 to a-4 
undetermined. By partial integration in the first and fourth term 
and application of the recursion formulae (16) one obtains, by 
identifying the result with the direct evaluation

1 (7¿ + l)2 — (2,/u)2 jP q
A, (/, + 1) (2 Í, + 2) (2 Z, + 3) ''+ *'  ''

X 1 ('/+D2-(W
3V('/+l)(2//+2)(2Z/+3)

Q
If + 1

- [æi Gi + 1 + P) + æ2 7/ + a?3 (If + 1) + x4 (l¡ — p)] q

+ (x4 + x2 — x3 — x4) ( r7?z rpe qr (rR*i)  dr.
Jo ’ dr '

(17)

* These formulae can be derived directly from the properties of the 4F4 func
tions (HTF, vol. I, chapter VI) or by the factorization method9.
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To get recursion formulae between Coulomb matrix elements 
we choose the xns so that the last term vanishes, i. e.,

æi + æ2 — æ3 — æ4 = 0 . (18)

In accordance with the parity selection rule one will often employ 
the further condition

In the resulting recursion relation we still have freedom in the 
choice of the ay/s. In particular, one can get a recursion for
mula with p fixed by the extra condition

•7'1 Gi + P + 1) + æ2 + æ3 + 1) "J" ^4 (^i -- p) = 0- (20)

For q = 0, the relations containing p — 1 as well as p become 
singular for p = — 2, which illustrates the more complicated 
character of matrix elements of the quadrupole type, as com
pared with that of dipole matrix elements.

Other recursion formulae may be obtained directly from the 
properties of the generalized hvpergeometric functions. An 
example will be given in connection with the theory of Coulomb 
excitation (II).

IV. Specializations.

In this section, we give a few examples of the reduction of 
the general formula (14) for the case q — 0, which is of special 
interest.

a) Discrete-discrete transitions.

In this case, the second and third parameters in the F2 func
tion become negative integers, namely // + 1 — nf = — zq and 
If + 1 — iif = — n¡. The F2 function is then reduced to a poly
nomial in x and y.10
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_ JM“»-3 4 ylf
+ nfl n2, n2 {2 1, + 1 )! (2 Z^+l)!

(21)

This formula contains, e. g., the matrix elements needed for the 
calculation of the intensity of hydrogen lines.

b) Discrete-continuous transitions.

Here, the parameter ß = /,• + 1 —n, — —n', will become a 
negative integer. The F2 function can, in this case, be reduced 
to a finite sum of ordinary hypergeometric functions (A 3).

with

X
2 irjf 

ni~ir]f

(22)

This formula applies, e. g., for the matrix elements occurring in 
the theory of electron emission by radioactive « — disintegra
tion11.
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c) Continuous-continuous transitions.
In the general case, the F2 function cannot easily be reduced 

to more elementary functions. The matrix element is

Z1 (/¿ + 1 + ¡Vi) H I1 (1/ + 1 + ¡Vf) I e 2 (,A + ,0

Z?2 G¿ + // + P + 3, /,■ + 1 — iry, If + 1 - 2 + 2, 2/^ + 2, x, y),

where .r
Vf —Vi

, — 2and y —--------.
Vf — Vi

(23)

Since X + y > 1, it is essential for the application of this for
mula to investigate the analytic continuation of the F2 function 
beyond the domain of convergence of the series expansion (Al). 
This problem will be treated in detail in (II) in connection with 
the theory of Coulomb excitation. In the case p = — 1 and 

= If, the F2 function is reduced directly to the usual hyper- 
geometric function (A6) and one obtains an expression which 
is identical with the formula of Gordon (loc. cit.).

V. Relativistic Matrix Elements.

fhe relativistic eigensolution for an electron in a Coulomb 
field —Ze\r is, in the notation of Rose and Osborn12,

where
Zx Zx> m~ 1l2,r\j, m> %1¡íiTY1 _r

T

with
ZX = | « | + V2 (sign x — 1 )

J = I * | — 7a

(24)
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and

The radial wave functions are solutions of the differential equa
tions

where W is the total energy (including the rest energy). The 
solution may be written in the following form:

(26)

where AT; x is a normalization factor and

We have used the following abbreviations:

For the discrete spectrum W < me2, n is the radial 
quantum number taking on the values 0, 1 The quantum 
number N is then

iV = j/n2' + z2 + 2 ny (28)
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and the parameter Å becomes

z — ATa. (19)

The normalization is determined by the condition

qnpcPr = 1,

Gva)-’A
(30)

giving

/1(2y + l)p/(7i')! « ./
|/ 4A (zV-x) / 1 +

Ny, x

For the continuous spectrum IF > me2 the parameters 
have the following values:

(31)

where p is the momentum at infinity. The normalization is

(32)

which makes the wave function real with the following asymp
totic behaviour:

I 1 1 / — sin \
\ff me2 \ cos / kr + p log 2 kr — ol + ô — — y (33)

The phases crz and ô arc defined by

= arg r (y + z??),

(34)

y + ip
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Since the relativistic wave functions are expressed by con
fluent hypergeometric functions, the matrix elements of rp e~qr 
may be calculated in the same way as the non-relativistic matrix 
elements (formula 14). Here, we shall give the result only:

/(me2 + etWi) (me2 + e2 W/)

{e3(AT¿—Xi)(Nf—F2(yt + yz + p + 1, — nf, — nz, 2 + 1, 2 yf + 1, x, y)

(35)

e4 nf nz

«5 (M — xf) nf

e6 (AT; — xz) nf

F2(/i+7/+p + l>—nz + 1,2/i + l, 2yz+l,x, y) 

^(yi + yy + p + l,—nz+l, 2y¿+l, 2yz+ 1, x, y) 

^2(7í + 7/ + p + 1,— nf+ 1, — nf,2yi+ l,2yf + l,x, y)}.

The signs en are given by

(— — \ ¡+ +1 1£i = [+ +) £2 _ - +J £¡J ~ \+ +/
(36)

f+ - /+ +\
e4 = (- +) = 1

Further,

X =
2Mi

u
2/Az

(37)
1/Åi + 1/AZ + ry i/â,+ imz + 9'

With this formula one can, e. g., write down directly the internal 
conversion matrix elements.
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Appendix:
Some properties of the generalized hypergeometric 

function of two variables, F2.

The F2 function is defined by a series expansion

where

F2 (a, ß, ß', y, y' x
x \^Cim + nßmßn „

. y) - > . -, y , (Ai)
VmVn‘n'-n\

m, zi= 0

r (a + 7»)
J\a)

= a (n + 1) • • • • (a + zn — 1).

This double series has the following domain of absolute con
vergence

I X I + I y I < 1. (A 2)

By summation over n, one gets an alternative series expansion

F2 (a, ß, ß', T, y' X, y) =
m^O

(A3)

The analytic continuation of the function F2 beyond the 
domain A 2 may be given by the integral representation

f2(«, ß, ß', y, y', x, y) =
r(y)r(ÿ) _

r(ß)r(ß')r(y-ß)r(y-ß')

\ idiidiui^ li>ß' “(1 — uy ß ’(1 —y)/ ß' — ux—vy) a 
«lo «lo

(A4)



Nr. 18 17

The integral representation has a meaning only when the fol
lowing inequalities are fulfilled,

Reß > 0 Reß' > 0 Re(y _£)>() Re(y' — ß') > 0.

There exist three transformations corresponding to the Euler 
transformations of the ordinary hypergeometric functions,

The F2 function reduces, for special choices of the para
meters, to a simpler function.

If the first index a is a negative integer, the series Al breaks 
off and the F2 function is thus a polynomial. The same is true 
when both parameters ß and ß' are negative integers. If only 
one of them is a negative integer, the series A3 reduces to a 
finite sum of ordinary hypergeometric functions. There exist also 
other special reduction formulae of which we use only

F2 ß, ß', ((, a, x, y) = (1 —x) (1 — y)

i (1 —æ)(l —y)

(A 6)
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It is shown that the calculation of the total cross section for Coulomb excita
tion can be reduced to the calculation of radial matrix elements between eigenstates 
in the Coulomb potential. With the method developed in the preceding paper, one 
is able to give closed expressions, convenient series expansions, and recursion 
formulae for these matrix elements. The case of vanishing energy loss and the 
semi-classical limit are also discussed.

I. Introduction.

r I "’he exact evaluation of the Coulomb excitation cross section 
1 has hitherto only been performed in the dipole case1’2. The 

radial matrix elements for the higher multipoles arc more com
plicated and have previously been treated only in the WBK 
approxmation3. With the method developed in the preceding 
paper4, one is able, however, to give closed expressions and 
suitable series developments of these matrix elements.

The closed expression given there contains a generalized 
hypergeometric function of two variables. It is one of the main 
points of this paper to give the analytical continuation of this 
function into the domain where it is of physical interest and from 
which the numerical evaluation can be performed. Once this is 
derived it will be easy to discuss the different limiting cases. We 
shall deal here especially with the limit of no energy loss and 
the classical limit. Furthermore, we shall give a number of 
recursion formulae which will considerably facilitate a numerical 
evaluation.

II. Reduction of the Coulomb Cross Section 
to Radial Matrix Elements.

The electromagnetic excitation of nuclear levels by means of 
impinging charged particles is a phenomenon analogous to the 
nuclear photoeffect, since specific nuclear properties enter only 
through matrix elements identical with those encountered in radia-

1*  
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lion theory. If one neglects the penetration of the projectile into 
the nucleus, one finds easily in the non-relativistic limit the 
following differential cross section for excitations by means of 
the electric field:

der 
di2 (1)

/Hi, Zx, and p are the mass, the charge, and the velocity of 
the projectile, respectively. The indices i and f refer to the initial 
and final states. B(EÅ) is the square of the nuclear 2Z pole electric 
transition matrix element in the notation of Bohr and Mottel- 
son5. The states | k > are eigenstates in the Coulomb field of the 
nucleus which, at distances far from the nucleus, behave as “plane 
waves” (distorted by the Coulomb field) with definite wave 
numbers k. These states may be decomposed in partial waves6: 
|T> =¿47r(- (2)

z = o

where aL — arg 7^(7+1 + irç) is the Coulomb phase and Ft(kr) 
the regular solution of the wave equation behaving as

sin In 2 kr + ol for kr » 1.

Introducing this into (1) one may integrate over the angles, 
utilizing the formula*

1 
kr — -In —

2

I /(2 11 + 1 ) (2 /2 4 0(2 + 1 ) 
I7 4%

//1 It h\ 
\ 0 0 0 /

/ 11 I2 I3 \
’ m1 m2 n?3 '

(3)

By integrating over the direction of k one obtains the total cross 
section

64 n1 2 Zf e2 vf ''Ç B (EX)
°el = fi4 (2 2+ l)2

z (4)
xX(2/¡ + i)(2// + i)('450Ájj.w,y-‘|*

< 7'
* Here we use the Wigner notation for the vector addition coefficients. The 

relation between those and the Clebsch-Gordon coefficients of Condon and Shortley 
(E. U. Condon and G. H. Shortley, Theory of Atomic Spectra, Oxford 1936) is

Hi h z3 'l _ V------ — < I mi l2 m2 I (h /2) l3 — m3 >.
y/2/3+l
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1 c= nAWi')'-1'1 Ft<~kir>dr- o) 
Aj Kf .'0

The selection rules for the angular momenta /,■ and l¡ are directly 
seen from equation (3) :

I ¡i — I/ I < Â < /,• + If and li 1/ Å even.

The evaluation of the total cross section is thus reduced to 
the evaluation of the radial integrals The differential cross
section and the angular distribution of subsequent y quanta can 
also be expressed by these radial matrix elements. In a forthcoming 
review article7, formulae will be given for these cross sections 
together with a more complete discussion of electromagnetic 
excitations.

III. Evaluation of the Radial Matrix Elements.

According to the formula (22) of I, the radial matrix element 
is given by

y-)—i = I + 1 + iZ?t) I i + 1 +>??/) I
' l,'r (2Z,+ i)!(2/z+i)!

( I. + /;-A+ 1 ) ! i'<+ + 2.t'< y'r e“ + O (A, - A,/“2 

-^2 (/í T" // — d- 2, /¡ + 1 i , If ] -T i'iff, 2 /, + 2, 2 If -T 2, x, — y),

where
X =

ê
and y =

2 Vi, 
t ’

forth er
£ = Vf — Vi and V =

Zj Z2 é
hv

Since the series expansion of the F2 function only converges for 
x and y in the neighbourhood of zero, one has for the numerical 
evaluation to lind the analytic continuation of this function in 
the neighbourhood of infinity.

'fhe analytic continuation is in fact given by the Barnes 
integral representation8, and suitable asymptotic expansions may 
easily be derived from this. However, we shall here use only the

(6)
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analytic continuation for the special case ± A and derive
the other matrix elements by means of recursion formulae.

In these matrix elements, where the change of / is maximum 
(maximal matrix elements), the F2 function reduces to an Fx 
according to formula A5. This may again be expressed by an 
F3 function (A5) for which an analytic continuation in terms of 
F2 functions is known (A4). One thus obtains immediately, e.g.,

_ 2 I_ 2

f2

F2(2 / + 2, / + Â + 1 — irji, l+l -T ii]j, 2 I + 2 Å + 2, 2 I + 2, x, — y) = 

F(z+^) I2

xF2i—H-1 +1 +1 H- z H- 1 — i'¡fa, l+l + iifa, Å +1 +1 + —A -J-1 + i + —, — R

(_1)z+l-i^(2Z + 2Â+ 1)! (—.r)

I \z+^F(/ + ;+i-^)/’(zÂ-jo

2*7// F(/+l—zyz)

XF2(— Â+ 1 + ¡+ / + Â+1 —z??,-, l+l+irjf, 2+1+z^,

* Dr. L. C. Biedenharn has kindly communicated to us an independent 
derivation of expressions equivalent to formulae (8) and (9) which were obtained 
directly without explicit use of the properties of the hypergeometric functions.

(7)

With this formula one gets for the radial matrix element*

F(/+1 + Z7?z) W k z_2 x j\r(Å+iO\2 
F(l 1 + ñ;¿) \rifi 1 ( (2Â—1)1

2 Fe
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Similarly, for the other maximal matrix element, one obtains

j| 7’0+ÍÍ) I2 
I (2Â-1)!

2 r — 2 2 -J- 1, I -(- 1 1 / 4~ 1 — lVi’ — 4~ 1 — 1 ê > ■—

+ 2 Ke 4 f V + ,í r<' + Â+1 +-’)/)r<-A~«)
_\2 T]J 1\IÅ + ir]i)

+ l + z£,—
2 Tji ‘2r]i

X F21 — 4~ 1 + i £, Z + 2 4-1 4~ z »//, I + 1 ■ úft, 2 4-1 4 if,

-2 + 1 +z7> —
2»?i 

= e~^ ^r+^i (Vi “ ty) •

(9)

In the first F2 function of these formulae, the first parameter, 
— 2 2 + 1, is a negative integer. Thus the functions are reduced 
to polynomials which for the lowest multipole orders are given 
explicitly by

F2 i— 2 2 + 1,1 + 1 — z rji, Z + 1 + z 7]/, — 2 + 1 — i£, — A —J— 1 —|— z £,---- , - —
\ Vf

1 . 
2 (1 + £2) Vf

1
2(i+ê2)"(4+ê2)

4 ///) + £ + 4(3^—2^-)]
Vf

for 2 = 1

for 2=2

for 2=3

(10)

The formulae (8) and (9) are well suited for a numerical evalua
tion, since the series expansion of F2 converges for nearly all 
interesting values of the parameters. However, for / » tj the con
vergence is rather slow.

IV. Recursion Formulae.

elements can be derived from
the maximal ones through recursion formulae. We shall first 
derive a recursion relation of this type, which we shall use for 
quadrupole matrix elements.
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Recursion relations connecting different multipoles can be 
used, e. g., for the calculation of the octupole matrix elements 
from the quadrupole ones.

For the numerical evaluation of the maximal matrix elements, 
it may also be advantageous to use recursion formulae connecting 
successive maximal matrix elements.

From the general formula I (17) one gets a recursion formula 
of the first type by demanding the condition

æl (^ ---- “T -T2 If + #3 + 1) + æ4 (^i H- d- 1) — (11)

besides the two conditions I (18,19). In the quadrupole case, 
this leads to two recursion formulae, where one has to set l¡ = 
1/— 1 and Z; = // + 1, respectively.

Pi i+!-r i/.2.1//+ p.j 3Í// + 2 + ya 3i/+i — 0, (12)

+ y "a Mi +3i i + i + 1/4 3/z ; 3 — 0, (13)

where

y, = Á-,(/ + 2)(2Z+3)[í+l+í»/l¡ 

i/a - -- /.//(21 )|/ + 1 + ir//\

!7, = 3á7(/ + 1)(2í + 1)|/ + 2 + í>íz| 

!/,= -3Å-,(/+l)(2/ + 3)|/+i>),|

y', = —3/.'i(/+l)(2í+l)|/ + 2 + í>;i 

1/2 — 3Ay(/+ 1 1(2/4- 3)|/ + irjf\

-À-,(/ + 2)(2/ + 3)|/+l+ir//| 

»; = í-,/(2/+i)|/+i+í»),|.

By elimination of the matrix element 3/z+31;Z + 1 from (12) and
(13) one obtains a recursion formula of the desired type

¿3///3 = Zi 3/z , + 2 + z2 3//_3! / +1 + z33/i+32Z + ^4 3/z+’\ 1—1 (15)

(14)

(15)
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By means of (15) the non-maximal quadrupole matrix elements 
are determined from the maximal ones already calculated in 
(8) and (9).

The recursion relation connecting matrix elements of different 
multipoles may also be derived from I (17). One relation involving 
octupole matrix elements is, e. g., obtained with the subsidiary 
condition xx = 0. This leads to

y i + i — U i i3 + 172 Ml i + 2 + IF i z +1 > 

where „
l/i = 2 I 7 + 1 + z J

y = (7 + 2) (2 7 + 3) y2 — fy (2 I + 1) I 7 4*  2 + ivy |

1/3 = — À-,(2 7 + 3) I 7 + z^-|.

(17)

(18)

In order to obtain recursion relations which involve only maximal 
matrix elements, we shall use the general properties of the 
functions which occur in these matrix elements. The property 
which we shall utilize is the following:

Fx (« + ^1 , ß + ^2 , ß + , 7 + 7Î4 » 1/)

A (.r, y) + B (.r, y) + C (x, y) j
Fx («, ß, ß', y, x, y),

(19)

where nr are arbitrary positive or negative integers and A, B, and 
C rational functions in x and y9.

A method of deriving recursion formulae is then to eliminate 
~Fr and -^—Fx between three such equations. The Fx function 
dx d y
which occurs in the maximal matrix elements is, for 7( = 7^ + 2, 

( I + 2 + 1 — iry, I + 1 + z î;/, 7 4- 1 — z'i/y, 2 7 + 2 2 + 2, x, y) = Ft (I)

With ,T = F‘- ,/ = A.
’//+’/>

One easily obtains

/.-(/+!) = (2' + 2A + 2)(2/ + 2A+3) 1
11 4- 2 + 1 + ir/i |211 + 1 + ir/f |2 (.r—y)

j (7 + 1 — ivy) (,r — 1)^ —(7 + 1 + ivy) (y — 1) A j. Fx (7) .

(20)

(21)
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Similar expressions for ^(Z—1) and Fi(l + 2) can be derived. The 
elimination of the derivatives gives the desired recursion formula

ZZ?! V Z —3 + W2 ^b+\—2,l — 2 + W3^l+\—l,l — l + + = 0
with

ii’i = 2 ThTjf I I — 2 + iTjf II I — 1 + Z77Z II / + Â — 2 + z?2i I
zp2 = —\l—l + |[i2(2 + 4 V/) + Z [4 (A — 2) (»7*  + V/) + »7i — »7/1

+ G — 2) [(2 A — 3) rç2 —- 3 rf] + 6 rft rf]

u’s = -(-\l + ¿—1 + i»7i I [Z2(4 7?2 + 2 772) + /[4 (A — 2)?7i + *7?  — ?7/]
Vi

— 2 (A — 2) Vi + 6 Í7í î?/]
w4 = — 2 ?72 I / + A — 1 + irji ¡I I + A + ir^ || I + zT;z |.

V. Limiting Cases.

We shall here study two limiting cases of the general formulae 
for the Coulomb matrix elements. The one is the case of vanishing 
energy loss, i. e. —rji ~ = 0, where one easily can obtain
a simple expression for an arbitrary Sommerfeld number. The 
second case is the classical limit where » 1, while r¡f — 
is finite. This must lead to expressions identical with the usual 
classical integrals10’ n.

a) £ - 0.
For the maximal matrix elements, the second term of equa

tions (8) and (9) is zero*  while the first F2 function is equal 
to one. One gets thus immediately the result

= (2 A’/“2 i(Azl)!P
(2A-1!)

r(l + 1 r zb/)
F(7+T+iT7V) • (24)

The other matrix elements can be obtained by means of the 
recursion formulae. For the quadrupole case one may use 
equation (15)**.  However, this becomes singular for ^—0, and 
the limiting process £ 0 has to be performed with some care.

* This is not true for 2 = 1, the result (24) is, however, right also in this case. 
** The formula (25) has been found also by L. C. Biedenharn and C. M. Class12 

who have given a numerical evaluation of the total cross section and one of the 
coefficients for the angular distribution of the subsequent y’s for the case £ = 0.

(22)

(23)
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' lim —
2(2 Z+ 1)Z(Z+l)^oê

r(Z + 1 + i/jf)
F(Z + 1 + ihi)

F(Z + 1 + irjt) 
r(l+l + irjf) ¿ W

-------------(2 Z + 1 —71Î7 + Z« [v(Z + 1 — Ji?) —y 0 + 1 + z" *?)]}•  
2Z(Z+1)(2Z+1)

We have here used the expansion T (x + ó) = I\x) [1 + ôy>(x)], 
where y(x) is the logarithmic derivative of the /’’-function.

For the octupole case one may use equation (17), and one 
gets directly

+ 1 3Z(Z+1)(Z+2)(2Z+1)(2Z+3)|Z + 1 + zi7|^3I/+1 + ZÎ?I

[2 Z + 1 — jr?/ + z/y (y) (Z + 1 — irf) — (Z + 1 + z^))] — Z (/ + 1) (2 Z + 1)}.

The limiting case 77 = 0, i.e., the case where a plane wave Born 
approximation applies, is immediately obtained from (24) and (25).

For rj » 1 one obtains the classical limit for £ = 0. The 
deflection angle 6 is there determined through tg 0/2 = rj/l (see 
below) and one gets, e. g., for the quadrupole case

These matrix elements are just i/r]2 times the classical integrals 
for £ = 0 given by Ter-Martirosyan (loc. cit.). The connection 
between the matrix elements and the classical integrals is ob
tained by the WBK approximation.

b) The. classical limit.

In the classical limit v¡ » 1, the main contribution to the 
matrix element < Æf|r” A > °f equation (1) will arise from
a narrow region of Z values around13

(25)

(26)
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mu cotgO/2, (28)

where p is the classical impact parameter and 0 the angle between 
À’, and k¡.

For p » 1 and £ finite, the F2 functions of (8) and (9) ap
proach the confluent hypergeometric functions of two variables 
lP2 according to equation (A3). One obtains thus, in view of 
equation (28),

with 2 = I (cot 0/2 0
e—Í0/2 _£

2 sin 0/2 ’

The classical integrals (0) are defined in ref. II). Similarly, 
one obtains

■vniT = V

4 0 •
= Á'"Zí‘F-sinÁ 0/‘> e¿(cot0/2 + 0/2-n/2)

4¿

X I I 7ià±_zï)|2ç/2( -2 2+ 1,-/1 + 1 z£, —Â + 1 + z£, — z*,  — z) 
I (22 — 1)!

+ 2 Re [T(- Â - z£) (z*) Â + ^(-1 /

P2(- Â+ 1 + z£,Â + 1 +z£,-2+ 1 + i£,-z*  - z)B

= 2
4 V

fhe non-maximal matrix elements may be obtained by means 
of the recursion formulae.
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The series expansion (A3) of the function converges for all 
values of the variables, and the formulae (29) and (30) are thus 
directly suited for a numerical evaluation.

Since the limiting formula (A3) also holds for any value of 
in the limit I » 1, the formulae (29) and (30) constitute the limits 
of the general formula (6) for large values of /,• and l>.

VI. Conclusions.
By means of the results obtained in this paper it is possible to 

calculate the exact matrix elements needed for the computation of 
the total and differential cross sections in Coulomb excitation. The 
main difficulty encountered in a numerical evaluation is the rather 
large number of angular momenta which contribute to the pro
cess. The main contribution will in fact arise from / values of 
the order / — ?;, but also much higher / values must be taken 
into account. A direct application of the formulae for the matrix 
elements is made difficult by the fact that the F2 functions con
verge rather slowly for Z > 77. However, this difficulty is over
come by the use of recursion formulae, whereby one may com
pute all matrix elements from the maximal matrix element, 
corresponding to I = 0,1, and 2. Furthermore, in the limit/» 1, 
the matrix elements approach always the classical integrals

2/4//’7^ (0, £), with tg 0/2 = tj/1. Extensive tables of these 
integrals have recently been compiled*.

VII. Numerical Results.**
A numerical evaluation along the above mentioned lines has 

been carried out on the high speed electronic computer BESK 
in Stockholm. The first three maximal matrix elements were 
calculated with an accuracy of 10-11. A comparison between 
the directly evaluated matrix elements and those obtained by the 
recursion formulae proved that this accuracy was sufficient for 
the application of successive recursion from these three first matrix 
elements.

* This tabulation, which was made by the authors, is not published, but 
parts of it are available on request.

** This chapter has been added to the original manuscript on May 10th 1955. 
We are greatly indebted to Prof. G. Breit for drawing our attention to an 
error of sign in the numerical calculation of ref. 11.
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Fig. 1. The ratio of the exact to the classical total cross section function /i2 (^¡,£) 
lfK2 (oo, £) for electric quadrupole excitation as a function of r/;. The curves for differ

ent values of £< 2 coincide within the accuracy of drawing for ??)1.
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An extract of the results is shown in Figs. 1—3.
The total cross section function fE2 (j]> 0 is connected with the 

total cross section for electric quadrupole excitation through

2 2

«■¿’2 —- B(E2)fE2(7]i,^).

With this definition one expects from the WBK approximation 
that the quantum mechanical corrections on f are small. Thus

64
ÍE2 (Vi> 0 = “AT- Vi Vi b0

♦)

 (3Z (/— 1) Z 3 v 1(1+1) (2 1+1) / 3
l2(2Z-l) V z~2’1) + (2 1-1) (2 1+3) 11

3 (Z + 1) (Z + 2) 7_3 \2 I
2 (2Z+ 3) V i+2,i) f
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The classical limit of this function is

<£2 (°°> £) = J
71 8 371
sin 0 (10

o 125
f)|2sin“4e/2.

This function was tabulated earlier (ref. 11) and is reproduced 
in Table 1. The results for the total cross section function is plotted 
in Fig. 1 as the ratio fE2 (//, O///Í2 0- Within the accuracy of
drawing the curves for different values of £ < 2 coincide for t] > 1.

The angular distribution coefficients are given by

with
fl2 = hilb0 and = bJb»

3 (Z+l) (Z + 2) (Z + 3) 
(2 Z+ 3)2

- 6
(/_,)/(;+1) 3 3

. \ 2 i i i

- 6
Z(Z+J)^(Z + 2) 3

(2 + 3)2 l +
COS ((JI — (7/4 2

i_9 Z(Z-l)(Z-2)(/-3) 3 ^9(Z-1)Z(Z+1)(/+2)(2Z+1)
i ¡16 (2Z—1)2(2 Z+ 1) ' /"2’/ 4 (2/ l)2(2/+3)2

9 (Z ± 11_<Z + 2> <Z + 3> <Z + 4>
16 (2 Z + 1) (2 / + 3)2

15
4

(£-2)(Z-1)Z(Z+_1)v_3
(2 /- l)2 (2 / + 3) " /-- J cos (a. - °i

15
4

££Z^1)(Z +2¿(/ + 3) -3
(2Z-l)(2Z+3)2 ' z + : d/z z COS (<7/ — cr/ + 2)

105
8

(¿-1)Z(Z+_1)(Z4:2) |7_3
(2Z-l)(2Z+l)(2Z+3) ' l + ‘2’1 Mi-2, i cos<ct/ + 2 — °i
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The results for n2 and a4 are plotted in Figs. 2 and 3. The classical 
curves (r/ = 3c) calculated earlier11 contain an error of sign.
The curves for =

«2 <Jli =

are discontinuous

«4 (Vi =

having the values

for £ = 0

for £ ± 0

for £ = 0

for £ ± 0

Table 1.

s /k2 (øo,£). 10+P P
0.0 0.8954 0
0.1 0.8638 0
0.2 0.7289 0
0.3 0.5608 0
0.4 0.4046 0
0.5 0.2781 0
0.6 0.1844 0
0.7 0.1189 0
0.8 0.7511 1
0.9 0.4663 1
1.0 0.2855 1
1.2 0.1035 1
1.4 0.3628 2
1.6 0.1238 2
1.8 0.4143 3
2.0 0.1363 3

The classical total cross section function for electric quadrupole excitation 
for £ < 2.
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Appendix:
Some Properties of Generalized Hypergeometric Functions 

of Two Variables.

Besides the function F2 defined in I, we shall here use the 
following Appell functions:

Fi(a, ß, ß' y,

Fa (a, a, ß, ß', y, x

where
T (fl + 71)

a (a + 1). . . . (a + n — 1).

(Al)

These double series have the following domain of absolute con
vergence :

I y I < !• (A2)

From these hypergeometric functions one can obtain related 
functions by a limiting process, (the so-called confluence), e. g.,

lim F2 a, ,y, y , «i x, e2 y = W2 («, y, y , x, y), 
Fi —0 \ 2 !
Fa —0

(A3)

where
co

m, n = 0

“m + n

7m n-

is a series expansion which converges for all values of x and y. 
There exist a large number of functional relations connecting 
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different hypergeometric functions. Some of these represent an 
analytic continuation, such as

F3(a,a,' ß,ß',y,x,y} = f(a,a',ß,ß')(—x') a (—p)

x y)

+ /■(«, ß'.ß,«’) (-.T)-“(- yyl1'

F2 í a + ß' + 1 — y, a, ß', cc + 1 — ß, ß' + 1 — cc' 1 1
’ æ’ y.

+ f(ß,ce’,a,ß') (~xrß(~ yya'

7*2  iß + «*  + 1 — y, ß, ct', ß + 1 — a, a' + 1 -ß'
i, i) 
æ y/

+ f(ß,ß',a,a') (—x)~ß (—y)~ß

F2[ß + ß' + 1 -y, ß,ß', ß + l-a,ß' + 1 — a
i i

where

f (Á 9 LI, O , (J ) — --------------------- - •
71(e)7Xa)r(y-2-/z)

(A4)

Others represent the reductions which occur for special choices 
of the parameters. We shall here use the following reduction 
formulae :

F2 (a, ß, ß', y, a, x, y) = (ß — y) P\ |/3, a — ß', ß', y, x

F2 («, ß, ß', a ,y',x, y) = (1 — x) ß F1\ßr, ß, a — ß, y', -- - , y |
\ 1 — x /

(A 5)
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